Login
Register
Need Help?
ABOUT
ABOUT THE EGA
EGA
Privacy Notice
Security
Team
STATISTICS
Bibliography
Growth
Community
Archive
Distribution
Catalog
PROJECTS AND FUNDERS
Projects
Funders
GA4GH
Federated EGA
Beacon
DISCOVERY
CATALOGUE
Studies
Datasets
DACs
Synthetic Data
METADATA
Search Box
Public Metadata API
SUBMISSION
DATA
File preparation
Uploading files
METADATA
EGA Schema
Sequencing & Phenotype
Submitter Portal
Submitter Portal API
Array
Programmatic Submission XML
ACCESS
DATA ACCESS COMMITTEE
What is a DAC?
Best Practices
DAC Portal
Data Use Conditions
REQUEST DATA
How to request data?
Quality Control Reports
DOWNLOAD
Metadata
Files
PyEGA3
Live Outbox
Visualisation
FUSE Client
EGA QuickView
Tips on how to search
DACs
EGAC00001001638
Data Access Committee breast cohort
Contact Information
carlos.caldas@cruk.cam.ac.uk
Request Access
This DAC controls 1 dataset
Dataset ID
Description
Technology
Samples
EGAD00001006293
Circulating tumor-derived DNA (ctDNA) can be used to monitor cancer dynamics noninvasively. Detection of ctDNA can be challenging in patients with low-volume or residual disease, where plasma contains very few tumor-derived DNA fragments. We show that sensitivity for ctDNA detection in plasma can be improved by analyzing hundreds to thousands of mutations that are first identified by tumor genotyping. We describe the INtegration of VAriant Reads (INVAR) pipeline, which combines custom error-suppression methods and signal-enrichment approaches based on biological features of ctDNA. With this approach, the detection limit in each sample can be estimated independently based on the number of informative reads sequenced across multiple patient-specific loci. We applied INVAR to custom hybrid-capture sequencing data from 176 plasma samples from 105 patients with melanoma, lung, renal, glioma, and breast cancer across both early and advanced disease. By integrating signal across a median of >105 informative reads, ctDNA was routinely quantified to 1 mutant molecule per 100,000, and in some cases with high tumor mutation burden and/or plasma input material, to individual parts per million. This resulted in median Area Under the Curve (AUC) values of 0.98 in advanced cancers, and 0.80 in early stage and challenging settings for ctDNA detection. We generalized this method to whole-exome and whole-genome sequencing, showing that the INVAR may be applied without requiring personalized sequencing panels, so long as a tumor mutation list is available. As tumor sequencing becomes increasingly performed, such methods for personalized cancer monitoring may enhance the sensitivity of cancer liquid biopsies.
65