Study
Targeted sequencing of genes recurrently mutated in AML
Study ID | Alternative Stable ID | Type |
---|---|---|
EGAS00001000408 | Cancer Genomics |
Study Description
Background Massively parallel sequencing technology has transformed cancer genomics. It is now feasible, in a clinically relevant time-frame, for a clinically manageable cost, to screen DNA from patient tumours for mutations essentially genome-wide. The challenge for personalised medicine will be to increase the sample size to thousands or tens of thousands of well-characterised cases in order to attain sufficient statistical power to stratify patients accurately across the complexity and genomic heterogeneity expected for most of the common tumour types. Currently, whole genome sequencing on this scale is not feasible, and targeted sequencing of relevant portions of the genome will be required. Pilot data We have developed protocols for large-scale, multiplexed sequencing of 100-200 genes in thousands of samples. Essentially, using robotic technology, genomic DNA from the cancer specimen is processed into sequencing libraries with unique DNA barcodes, thereby allowing sequencing reads to be attributed to the sample they derive from. Currently, these sequencing libraries can be ... (Show More)
Study Datasets 1 dataset.
Click on a Dataset ID in the table below to learn more, and to find out who to contact about access to these data
Dataset ID | Description | Technology | Samples |
---|---|---|---|
EGAD00001000606 |
Background Massively parallel sequencing technology has transformed cancer genomics. It is now feasible, in a clinically relevant time-frame, for a clinically manageable cost, to screen DNA from patient tumours for mutations essentially genome-wide. The challenge for personalised medicine will be to increase the sample size to thousands or tens of thousands of well-characterised cases in order to attain sufficient statistical power to stratify patients accurately across the complexity and ... (Show More)
|
Illumina MiSeq | 38 |
Who archives the data?
