Study

Metastatic Breast Cancer Whole Genome

Study ID Alternative Stable ID Type
EGAS00001000902 Cancer Genomics

Study Description

We propose to definitively characterise the somatic genetics of Metastatic breast cancer through generation of comprehensive catalogues of somatic mutations in Metastatic breast cancer cases by high coverage genome sequencing coupled with integrated transcriptomic and methylation analyses.

Study Datasets 5 datasets.

Click on a Dataset ID in the table below to learn more, and to find out who to contact about access to these data

Dataset ID Description Technology Samples
EGAD00001000898
Cancers are ecosystems of genetically related clones, competing across space and time for limited resources. To understand the clonal structure of primary breast cancer, we applied genome and targeted sequencing to 295 samples from 49 patients’ tumors. The extent of subclonal diversification varied considerably among patients and encompassed many spatial patterns, including local growth, intraductal dissemination and clonal intermixture. Landmarks of disease progression, such as acquiring ... (Show More)
Illumina HiSeq 2000 42
EGAD00001000899
We propose to definitively characterise the somatic genetics of Metastatic breast cancer through generation of comprehensive catalogues of somatic mutations in Metastatic breast cancer cases by high coverage genome sequencing coupled with integrated transcriptomic and methylation analyses.
Illumina HiSeq 2000 41
EGAD00001001335
We propose to definitively characterise the somatic genetics of breast cancer through generation of comprehensive catalogues of somatic mutations in breast cancer cases by high coverage genome sequencing coupled with integrated transcriptomic and methylation analyses.
Illumina Genome Analyzer II,Illumina HiSeq 2000 28
EGAD00001001351
Frequent somatic transfer of mitochondrial DNA into the nuclear genome of human cancer cells
Illumina HiSeq 2000 2
EGAD00001002696
Recurrent breast cancer is almost universally fatal. We characterize 170 patients locally relapsed or distant metastatic cancers using massively parallel sequencing. We identify that the relapse-seeding clone disseminates late from the primary tumor. TP53 and AKT1 appear to be enriched in ER-positive cancers predisposed to relapse. Mutation acquisition continues at relapse as the same mutation signatures continue to operate and new signatures, such as that caused by radiotherapy appear de novo. ... (Show More)
HiSeq X Ten,Illumina HiSeq 2000 58

Who archives the data?

Publications

Citations

Retrieving...
Retrieving...
Retrieving...
Retrieving...
Retrieving...
Retrieving...
Retrieving...
Retrieving...
Retrieving...
Retrieving...