Study
Whole Genome Sequencing of Liver Cancers
Study ID | Alternative Stable ID | Type |
---|---|---|
EGAS00001002408 | Other |
Study Description
Genomic alterations driving tumorigenesis result from the interaction of environmental exposures and endogeneous cellular processes. With a diversity of risk factors including viral infection, carcinogenic exposures and metabolic diseases, liver cancer is an ideal model to study these interactions. Whole genome sequencing of liver tumors identified 10 mutational signatures showing distinct relationships with environmental exposures, replication and transcription. Transcription-coupled damage was specifically associated with the liver-specific signature 16 and alcohol intake. Flood of indels were identified in very highly expressed hepato-specific genes, likely resulting from replication-transcription collisions. Reconstruction of sub-clonal architecture revealed mutational signature evolution during tumor development exemplified by the vanishing of aflatoxin-B1 signature in African migrants. These findings shed new light on the natural history of liver cancers
Study Datasets 1 dataset.
Click on a Dataset ID in the table below to learn more, and to find out who to contact about access to these data
Dataset ID | Description | Technology | Samples |
---|---|---|---|
EGAD00001003281 |
Genomic alterations driving tumorigenesis result from the interaction of environmental exposures and endogeneous cellular processes. With a diversity of risk factors including viral infection, carcinogenic exposures and metabolic diseases, liver cancer is an ideal model to study these interactions. Whole genome sequencing of liver tumors identified 10 mutational signatures showing distinct relationships with environmental exposures, replication and transcription. Transcription-coupled damage ... (Show More)
|
Illumina HiSeq 2000 | 52 |
Who archives the data?

Publications
Citations
Retrieving...

Retrieving...

Retrieving...

Retrieving...

Retrieving...

Retrieving...
