Study

Cell fate mapping of human glioblastoma reveals an invariant stem cell hierarchy pre- and post-treatment

Study ID Alternative Stable ID Type
EGAS00001002424 Other

Study Description

Human glioblastomas (GBMs) are thought to harbour a subpopulation of glioblastoma stem cells (GSCs) that initiate tumour formation and regrowth following treatment. However, the origin of their proliferative heterogeneity during tumour growth pre- and post-treatment remains poorly understood. Here we study the clonal evolution of DNA barcoded GBMs following their serial propagation in xenograft mouse models to define the fate behaviour of individual GBM cells. Through quantitative analysis of clone sizes scored across multiple passages, we show that the growth of GBM clones in vivo are consistent with a remarkably neutral process resulting from a conserved proliferative hierarchy. In this model, slow-cycling stem-like cells give rise to a more rapidly cycling progenitor population with extensive self-maintenance capacity, that in turn generates short-lived cells that lack proliferative ability. We also identify rare "outlier" clones that deviate from these dynamics, and further show that chemotherapy reproducibly facilitates the selective expansion of pre-existing drug-resistant ... (Show More)

Study Datasets 2 datasets.

Click on a Dataset ID in the table below to learn more, and to find out who to contact about access to these data

Dataset ID Description Technology Samples
EGAD00001003293
RNA-Seq and WXS from 6 glioblastoma patients
Illumina HiSeq 2500 11
EGAD00001003422
WXS from barcoded cells that are FACS sorted from GBM-719 xenografts, and the germline reference from patient GBM-719. The 4 xenografts are named according to passage (secondary or tertiary) and treatment (vehicle control or temozolomide).
Illumina HiSeq 2500 5

Who archives the data?

Publications

Citations

Retrieving...
Retrieving...