Study

Genome-wide mutational consequences of nucleotide excision repair-deficiency through XPC deletion in a human adult stem cell culture

Study ID Alternative Stable ID Type
EGAS00001002681 Other

Study Description

Nucleotide excision repair (NER) is one of the main DNA repair pathways that protect cells against genomic damage. Deficiency in this pathway can contribute to the development of cancer and accelerate aging. NER-deficiency is an important determinant for cancer treatment outcome, as NER-deficient tumors are selectively sensitive to cisplatin treatment. While NER-deficiency has been linked to mutational Signature 5, not all NER-deficient tumors are characterized by a high Signature 5 contribution, illustrating the importance to further characterize the mutational consequences of NER-deficiency. Here, we analyzed the mutational profile of a human adult stem cell (organoid) culture that is deficient in NER through XPC deletion by CRISPR-Cas9 gene-editing, and subsequent whole-genome sequencing analysis of a clonally derived organoid. We found that XPC deletion results in an increase in base substitution load and specifically induces Signature 8 mutations, a mutational signature with previously unknown etiology. Presence of Signature 8 may, therefore, serve as a novel biomarker for ... (Show More)

Study Datasets 1 dataset.

Click on a Dataset ID in the table below to learn more, and to find out who to contact about access to these data

Dataset ID Description Technology Samples
EGAD00001003779
Whole genome sequencing (WGS) data of human small intestinal organoid cultures, which were deleted for the XPC gene using CRISPR-Cas9. Contains WGS data of 1 clone and 1 subclone.
HiSeq X Ten 2

Who archives the data?

Publications

Citations

Retrieving...
Retrieving...