The molecular basis of T-PLL is an actionable perturbation of TCL1/ATM- and epigenetically instructed damage responses
T-cell prolymphocytic leukemia (T-PLL) is a rare and poor-prognostic mature T-cell malignancy. To address its incomplete molecular concept, we integrated large-scale profiling data of alterations in gene expression, allelic copy number (CN), and nucleotide sequences in 111 well-characterized patients. Besides prominent signatures of T-cell activation and prevalent clonal variants, we also identified novel hot-spots for CN variability, fusion molecules, alternative transcripts, and progression-associated dynamics. The overall lesional spectrum of T-PLL is mainly annotated to axes of DNA damage responses, T-cell receptor/cytokine signaling, and histone modulation. We formulate a multi-dimensional model of T-PLL pathogenesis centered around a unique combination of TCL1 overexpression with damaging ATM aberrations as initiating core lesions. The effects imposed by TCL1 cooperate with compromised ATM towards a leukemogenic phenotype of impaired DNA damage processing. Dysfunctional ATM appears inefficient in alleviating elevated redox burdens and telomere attrition and in evoking a p53-dependent apoptotic response to genotoxic insults. As non-genotoxic strategies, synergistic combinations of p53 reactivators and deacetylase inhibitors reinstate such cell death execution.
- Type: Other
- Archiver: European Genome-Phenome Archive (EGA)
Click on a Dataset ID in the table below to learn more, and to find out who to contact about access to these data
Dataset ID | Description | Technology | Samples |
---|---|---|---|
EGAD00001003825 | Illumina HiSeq 2000 Illumina MiSeq | 134 |
Publications | Citations |
---|---|
Actionable perturbations of damage responses by TCL1/ATM and epigenetic lesions form the basis of T-PLL.
Nat Commun 9: 2018 697 |
48 |