Study

Hominin-specific NOTCH2 paralogs expand human cortical neurogenesis through regulation of Delta/Notch interactions.

Study ID Alternative Stable ID Type
EGAS00001002798 Other

Study Description

The human cerebral cortex has undergone rapid expansion and increased complexity during recent evolution. Hominid-specific gene duplications represent a major driving force of evolution, but their impact on human brain evolution remains unclear. Using tailored RNA sequencing (RNAseq), we profiled the spatial and temporal expression of Hominid-specific duplicated (HS) genes in the human fetal cortex, leading to the identification of a repertoire of 36 HS genes displaying robust and dynamic patterns during cortical neurogenesis. Among these we focused on NOTCH2NL, previously uncharacterized HS paralogs of NOTCH2. NOTCH2NL promote the clonal expansion of human cortical progenitors by increasing self-renewal, ultimately leading to higher neuronal output. NOTCH2NL function by activating the Notch pathway, through inhibition of Delta/Notch interactions. Our study uncovers a large repertoire of recently evolved genes linking genomic evolution to human brain development, and reveals how hominin-specific NOTCH paralogs may have contributed to the expansion of the human cortex. The dataset ... (Show More)

Study Datasets 1 dataset.

Click on a Dataset ID in the table below to learn more, and to find out who to contact about access to these data

Dataset ID Description Technology Samples
EGAD00001003915
The dataset contains raw sequences (FASTQ files) from the Illumina 2x150bp paired-end RNA sequencing profiles of 11 fetal human brain samples at 7, 9, 12, 15 and 21 gestational weeks
Illumina HiSeq 2000,Illumina HiSeq 2500 9

Who archives the data?

Publications

Citations

Retrieving...
Retrieving...