A whole genome analysis of single fetal human stem cells from the liver and the intestine

Study ID Alternative Stable ID Type
EGAS00001002886 Other

Study Description

Mutations of embryonic and fetal origin have the potential to affect a large proportion of adult cells and may alter cancer predisposition or lead to genetic disease syndromes. We have recently shown that human adult-stem cells progressively acquire approximately 40 novel tissue-specific mutations per year throughout postnatal life. Prenatal mutation rates are as yet unknown. Here we determined genome-wide mutation patterns of single stem cells in human development by sequencing of clonally expanded intestinal and liver organoid cultures of 2nd trimester human foetuses. Our results show that mutation rates in fetal stem cells are significantly higher than in adult stem cells.

Study Datasets 1 dataset.

Click on a Dataset ID in the table below to learn more, and to find out who to contact about access to these data

Dataset ID Description Technology Samples
From 2nd trimester human foetuses we derived liver and intestinal stem cells. These were clonally expanded until enough material was available for whole genome sequencing. For each foetus, reference tissue (skin or bulk liver) was also sequenced to determine all germline variants. These were subtracted from the clones to determine all somatic mutations that had been acquired during embryonic and fetal development.
HiSeq X Ten,NextSeq 500 50

Who archives the data?