The spatio-temporal evolution of lymph node spread in early breast cancer
Purpose: The most significant prognostic factor in early breast cancer is lymph node involvement. This stage between localised and systemic disease is key to understanding breast cancer progression, however our knowledge of the evolution of lymph node malignant invasion remains limited, as most currently available data derive from primary tumours. Experimental design: In 11 treatment-naïve node positive early breast cancer patients without clinical evidence of distant metastasis, we investigated lymph node evolution using spatial multi-region sequencing (n=78 samples) of primary and lymph node deposits and genomic profiling of matched longitudinal circulating tumour DNA (ctDNA). Results: Linear evolution from primary to lymph node was rare (1/11) whereas the majority of cases displayed either early divergence between primary and nodes (4/11), or no detectable divergence (6/11) where both primary and nodal cells belonged to a single recent expansion of a metastatic clone. Divergence of metastatic subclones was driven in part by APOBEC. Longitudinal ctDNA samples from 2 subjects taken peri-operatively reflected the two major evolutionary patterns and demonstrate that private mutations can be detected even from early metastatic nodal deposits. Moreover, node removal resulted in disappearance of private lymph node mutations in ctDNA.Conclusions: This study sheds new light on a crucial evolutionary step in the natural history of breast cancer, demonstrating early establishment of axillary lymph node metastasis in a substantial proportion of patients.
- Type: Other
- Archiver: European Genome-Phenome Archive (EGA)
Click on a Dataset ID in the table below to learn more, and to find out who to contact about access to these data
Dataset ID | Description | Technology | Samples |
---|---|---|---|
EGAD00001004122 | Illumina HiSeq 2500 | 183 |
Publications | Citations |
---|---|
The Spatiotemporal Evolution of Lymph Node Spread in Early Breast Cancer.
Clin Cancer Res 24: 2018 4763-4770 |
20 |
Clonal replacement and heterogeneity in breast tumors treated with neoadjuvant HER2-targeted therapy.
Nat Commun 10: 2019 657 |
32 |