Study
Dissecting features of epigenetic variants underlying cardiometabolic risk using full-resolution epigenome profiling in regulatory elements
Study ID | Alternative Stable ID | Type |
---|---|---|
EGAS00001003415 | Other |
Study Description
Sparse profiling of CpG methylation in blood by microarrays have identified epigenetic links to common diseases. We apply methylC-capture sequencing (MCC-Seq) in a clinical population of ~200 adipose tissue and matched blood samples (Ntotal ~400), providing high-resolution methylation profiling (>1.3M CpGs) at regulatory elements. We link methylation to cardiometabolic risk through associations to circulating plasma lipid levels and identify lipid-associated CpGs with unique localization patterns in regulatory elements. We show distinct features of tissue-specific versus tissue-independent lipid-linked regulatory regions by contrasting with parallel assessments in ~800 independent adipose tissue and blood samples from the general population. We follow-up on adipose-specific regulatory regions under (1) genetic and (2) epigenetic (environmental) regulation via integrational studies. Overall, the comprehensive sequencing of regulatory element methylomes reveals a rich landscape of functional variants linked genetically as well as epigenetically to plasma lipid traits.
Study Datasets 1 dataset.
Click on a Dataset ID in the table below to learn more, and to find out who to contact about access to these data
Dataset ID | Description | Technology | Samples |
---|---|---|---|
EGAD00001004787 |
The study includes NGS-based methylC-capture sequencing (MCC-Seq) on 199 visceral adipose tissue and 206 whole-blood DNA samples derived from obese individuals (BMI >40 kg m-2) in the IUCPQ cohort. We generated 100bp paired-end reads using the Illumina HiSeq2000 or 2500 systems.
|
Illumina HiSeq 2500 | 345 |
Who archives the data?

Publications
Citations
Retrieving...

Retrieving...
