Study
multi-OMICs study of a pair of infant monozygotic twins with concordant B-cell ALL
Study ID | Alternative Stable ID | Type |
---|---|---|
EGAS00001003651 | Other |
Study Description
B-cell acute lymphoblastic leukemia (B-cell ALL) is the most common cancer in childhood. Studying identical twins with B-cell ALL provides a unique and tractable model for deciphering the developmental timing of pre- and post-natal mutations contributing to clonal evolution. To date, this has mainly focused on major cytogenetic subgroups of childhood B-cell ALL, including MLL fusions, ETV6-RUNX1, hyperdiploidy, and BCR-ABL1. However, formal demonstration of the prenatal origin and “backtracking” the natural history of the leukemia remains understudied in “B-other”/Normal Karyotype (NK) B-cell ALL. To characterize the genetic and the epigenetic landscape of this particular leukemia subtype, we performed whole genome DNA-, B-cell receptor (BCR)-, and DNA bisulfite-sequencing on a pair of 8-month-old monozygotic twins diagnosed with concordant “B-other”/NK B-cell ALL.
Study Datasets 2 datasets.
Click on a Dataset ID in the table below to learn more, and to find out who to contact about access to these data
Dataset ID | Description | Technology | Samples |
---|---|---|---|
EGAD00001005017 |
B-cell acute lymphoblastic leukemia (B-cell ALL) is the most common cancer in childhood. Studying identical twins with B-cell ALL provides a unique and tractable model for deciphering the developmental timing of pre- and post-natal mutations contributing to clonal evolution. To date, this has mainly focused on major cytogenetic subgroups of childhood B-cell ALL, including MLL fusions, ETV6-RUNX1, hyperdiploidy, and BCR-ABL1. However, formal demonstration of the prenatal origin and ... (Show More)
|
HiSeq X Ten | 4 |
EGAD00001005018 |
B-cell acute lymphoblastic leukemia (B-cell ALL) is the most common cancer in childhood. Studying identical twins with B-cell ALL provides a unique and tractable model for deciphering the developmental timing of pre- and post-natal mutations contributing to clonal evolution. To date, this has mainly focused on major cytogenetic subgroups of childhood B-cell ALL, including MLL fusions, ETV6-RUNX1, hyperdiploidy, and BCR-ABL1. However, formal demonstration of the prenatal origin and ... (Show More)
|
HiSeq X Ten | 2 |
Who archives the data?

Publications
Citations
Retrieving...

Retrieving...
