Cistrome-partitioning reveals convergence of somatic mutations and risk-variants on master transcription regulators in primary prostate tumors

Study ID Alternative Stable ID Type
EGAS00001003928 Other

Study Description

Thousands of noncoding somatic Single Nucleotide Variants (SNVs) of unknown function are reported in tumors. Partitioning the genome according to cistromes, reveals the enrichment of somatic SNVs in prostate tumors as opposed to adjacent normal tissue cistromes of master transcription regulators, including AR, FOXA1 and HOXB13. This parallels enrichment of prostate cancer genetic predispositions over these transcription regulators’ tumor cistromes, exemplified at the 8q24 locus harboring both risk-variants and somatic SNVs in cis-regulatory elements, upregulating MYC expression and altering the binding of transcription regulators to DNA. However, Massively-Parallel Reporter Assays reveal that few SNVs can alter the transactivation potential of individual CREs. Instead, SNVs accumulate, similarly to inherited riskvariants, in cistromes of master transcription regulators required for prostate cancer development. Difficulties in inferring the biological significance of noncoding mutations have limited their inclusion in precision genomics medicine pipelines. Most attempts to ... (Show More)

Study Datasets 1 dataset.

Click on a Dataset ID in the table below to learn more, and to find out who to contact about access to these data

Dataset ID Description Technology Samples
ChIP-seq for AR, FOXA1 and HOXB13 on 8 prostectomy samples, both regions with/-out tumor cells, Fastq files.
Illumina HiSeq 2500 50

Who archives the data?