Need Help?

Analysis of RAD51C promoter methylation using targeted bisulfite sequencing (amplicon sequencing) in ovarian cancer pre-clinical models and patient samples.

In high-grade serous ovarian carcinoma (HGSC), deleterious mutations in the DNA repair gene RAD51C are established drivers of defective homologous recombination and are emerging biomarkers of PARP inhibitor (PARPi) sensitivity. RAD51C promoter methylation (meRAD51C) is detected at similar frequencies to mutations, yet its effects on PARPi responses remain unresolved. In this study, three HGSC patient-derived xenograft (PDX) models with methylation at most or all examined CpG sites in the RAD51C promoter show responses to PARPi. Both complete and heterogeneous methylation patterns were associated with RAD51C gene silencing and homologous recombination deficiency (HRD). PDX models lost meRAD51C following treatment with PARPi rucaparib or niraparib, where a single unmethylated copy of RAD51C was sufficient to drive PARPi resistance. Genomic copy number profiling of one of the PDX models using SNP arrays revealed that this resistance was acquired independently in two genetically distinct lineages. In a cohort of 11 patients with RAD51C-methylated HGSC, various patterns of meRAD51C were associated with genomic 'scarring', indicative of HRD history, but exhibited no clear correlations with clinical outcome. Differences in methylation stability under treatment pressure were also observed between patients, where one HGSC was found to maintain meRAD51C after 6 lines of therapy (4 platinum-based), whilst another HGSC sample was found to have heterozygous meRAD51C and elevated RAD51C gene expression (relative to homozygous meRAD51C controls) after only neo-adjuvant chemotherapy. As meRAD51C loss in a single gene copy was sufficient to cause PARPi resistance in PDX, methylation zygosity should be carefully assessed in previously treated patients when considering PARPi therapy.

Click on a Dataset ID in the table below to learn more, and to find out who to contact about access to these data

Dataset ID Description Technology Samples
EGAD00001007799 Illumina MiSeq 20