Need Help?

Myoepithelial progenitors as founder cells of hyperplastic human breast lesions upon PIK3CA transformation

The myoepithelial (MEP) lineage of human breast comprises bipotent and multipotent progenitors in ducts and terminal duct lobular units (TDLUs). We here assess whether this heterogeneity impacts on oncogenic PIK3CA transformation. Single cell RNA sequencing (scRNA-seq) and multicolor imaging reveal that terminal ducts represent the most enriched source of cells with ductal MEP markers including a-smooth muscle actin (a-SMA), keratin K14, K17 and CD200. Furthermore, we find neighboring CD200high and CD200low progenitors within terminal ducts. When sorted and kept in ground state conditions, their CD200low and CD200high phenotypes are preserved. Upon differentiation, progenitors remain multipotent and bipotent, respectively. Immortalized progenitors are transduced with shp53 and mutant PIK3CA. Upon transplantation, CD200low MEP progenitors distinguish from CD200high by the formation of multilayered structures with a hyperplastic inner layer of luminal epithelial cells. We suggest a model with spatially distributed MEP progenitors as founder cells of biphasic breast lesions with implications for early detection and prevention strategies.

Click on a Dataset ID in the table below to learn more, and to find out who to contact about access to these data

Dataset ID Description Technology Samples
EGAD00001008468 NextSeq 550 6
Publications Citations
Myoepithelial progenitors as founder cells of hyperplastic human breast lesions upon PIK3CA transformation.
Commun Biol 5: 2022 219
1
Oncogene activated human breast luminal progenitors contribute basally located myoepithelial cells.
Breast Cancer Res 26: 2024 183
0