Clonal somatic copy number altered driver events inform drug sensitivity in high-grade serous ovarian cancer

Study ID Alternative Stable ID Type
EGAS00001006200 Other

Study Description

Chromosomal instability is a major challenge to patient stratification and targeted drug development for high-grade serous ovarian carcinoma (HGSOC). Here we show that somatic copy number alterations (SCNAs) in frequently amplified HGSOC cancer genes significantly correlate with gene expression and methylation status. We identified five prevalent clonal driver SCNAs (chromosomal amplifications encompassing MYC, PIK3CA, CCNE1, KRAS and TERT) from multi-regional HGSOC data and reasoned that their strong selection should prioritise them as key biomarkers for targeted therapies. We used primary HGSOC spheroid models to test interactions between in vitro targeted therapy and SCNAs. MYC chromosomal copy number was associated with in-vitro and clinical response to paclitaxel and in-vitro response to mTORC1/2 inhibition. Activation of the mTOR survival pathway in the context of MYC-amplified HGSOC was statistically associated with increased prevalence of SCNAs in genes from the PI3K pathway. Co-occurrence of amplifications in MYC and genes from the PI3K pathway was independently observed in ... (Show More)

Study Datasets 1 dataset.

Click on a Dataset ID in the table below to learn more, and to find out who to contact about access to these data

Dataset ID Description Technology Samples
This dataset consists of shallow whole genome sequencing data and amplicon sequencing data for 26 ovarian cancer patients (21 high-grade serous ovarian cancer, 4 low-grade serous ovarian cancer and 1 clear cell ovarian cancer). The data are provided as single end FASTQ files for the shallow whole genome sequencing data (31 libraries) and paired end FASTQ files for the amplicon sequencing data (98 libraries).
Illumina HiSeq 2500,Illumina HiSeq 4000 26

Who archives the data?