Need Help?

T cell landscape definition by multi-omics identifies galectin-9 as novel immunotherapy target in chronic lymphocytic leukemia (CLL)

Failure of immunotherapy after applying checkpoint inhibitors or CAR-T cells is linked to T cell exhaustion. Here, we explored the T cell landscape in chronic lymphocytic leukemia (CLL) by single-cell omics analyses of blood, bone marrow and lymph node samples of patients and spleen samples of a CLL mouse model. By single-cell RNA- sequencing, mass cytometry (CyTOF), and multiplex image analysis of tissue microarrays, we defined the spectrum of phenotypes and transcriptional programs of T cells and and their differentiation state trajectories. We identified disease-specific accumulation of distinct regulatory T cell subsets and T cells harboring an exhausted phenotype exclusively in the CLL lymph node tissue. Integration of TCR data revealed a clonal expansion of CD8+ precursor exhausted T cells, suggesting their reactivity for CLL cells. Interactome analyses identified the TIM3 ligand Galectin-9 as novel immunoregulatory molecule in CLL. Blocking of Galectin-9 in CLL-bearing mice slowed down disease development and reduced the number of TIM3 expressing T cells. Galectin-9 expression correlated with shorter survival of CLL patients. Thus, Galectin-9 contributes to immune escape in CLL and represents a novel target for immunotherapy.

Click on a Dataset ID in the table below to learn more, and to find out who to contact about access to these data

Dataset ID Description Technology Samples
EGAD00001009986 Illumina HiSeq 4000 Illumina NovaSeq 6000 NextSeq 550 10