Need Help?

National Institute on Aging - Late Onset Alzheimer's Disease Family Study: Genome-Wide Association Study for Susceptibility Loci

Alzheimer disease is the most common neurodegenerative disorder of the elderly affecting an estimated five million Americans. Genetic factors contribute to the risk for disease with heritability estimates ranging from 57% to 79%. More than a decade ago, the ε4 variant of APOE was identified and remains the most consistently replicated genetic variant influencing the risk of late onset Alzheimer disease. A segregation analysis suggests there may be four additional genes influencing the age-at-onset of Alzheimer disease. In 2007 there were 968 association studies in 398 candidate genes reported, but none replicated consistently. There are many reasons for the lack of consistency, but one important reason for the lack of progress is the paucity of a sufficient number of well characterized families and patients available to the entire scientific community. The extensive effort and expense required to ascertain such a population has been addressed by the NIA-LOAD Family Study. Its goal is to identify and recruit families with two or more siblings with the late-onset form of Alzheimer's disease and a cohort of unrelated, non-demented controls similar in age and ethnic background, and to make the samples, the clinical and genotyping data and preliminary analyses available to qualified investigators world-wide. Genotyping by the Center for Inherited Disease Research (CIDR) was performed using the Illumina Infinium II assay protocol with hybridization to Illumina Human 610Quadv1_B Beadchips. This genotyping represents the largest collection of families ever assembled with Alzheimer's disease combining the NIA-LOAD Genetics Initiative Multiplex Family Study, the National Cell Repository for Alzheimer's Disease (NCRAD) with additional controls from the University of Kentucky. These genotyping results will serve as a focal point for future research that will identify all of the remaining genetic variants in Alzheimer's disease.