Sanger sequencing of catalytic-domain encoding exons of tyrosine kinase genes from human endometrial tumor DNAs
The purpose of the original study was to search for somatic mutations in the tyrosine kinome of serous and clear cell endometrial carcinomas (human). The study was conducted in two phases.
Phase 1: A mutation discovery screen, in which ~577 exons encoding the catalytic domains of 86 tyrosine kinases were PCR-amplified and bidirectionally Sanger sequenced from 24 serous, 11 clear cell, and 5 mixed histology endometrial tumors. This was followed by alignment of sequence reads to the human reference sequence and subsequent nucleotide variant calling to identify potential somatic (tumor-specific) mutations. Potential somatic mutations were confirmed by re-amplification and sequencing of the relevant tumor DNA as well as matched non-tumor ("normal") DNA from the same case.
Phase 2: A mutation prevalence screen, in which the non-catalytic regions two tyrosine kinase genes, TNK2 and DDR1, were PCR-amplified and sequenced from the 40 discovery screen tumors, and all coding exons of TNK2 and DDR1 were PCR-amplified and sequenced from another 10 clear cell, 21 serous, and 41 endometrioid endometrial tumors, in an effort to identify additional somatic mutations in each gene. Exons encoding the exonuclease domain of POLE were also sequenced to document somatic mutations.
- Type: Case Set
- Archiver: The database of Genotypes and Phenotypes (dbGaP)