eMERGE Network Imputed GWAS for 41 Phenotypes
The electronic Medical Records and Genomics (eMERGE) Network is a consortium of ten participating sites (Cincinnati Children's Hospital Medical Center/Boston Children's Hospital, Children's Hospital of Philadelphia, Essentia Institute of Rural Health, Marshfield Clinic Research Foundation and Pennsylvania State University, Geisinger Clinic, Group Health Cooperative/University of Washington, Mayo Clinic, Icahn School of Medicine at Mount Sinai, Northwestern University, Vanderbilt University Medical Center) funded by the NHGRI to investigate the use of electronic medical record (EMR) systems for genomic research. The goal of eMERGE is to conduct genome-wide association studies in approximately 55,000 individuals using EMR-derived phenotypes and DNA from linked Biorepositories.
Using electronic phenotyping methods, the consortium used DNA samples from all participating sites to explore the genetic determinants of over forty phenotypes, including Abdominal aortic aneurysm; Ace-Inhibitor/Cough; Attention Deficit Hyperactivity Disorder; Age-related macular disease; Appendicitis; Asthma; Atopic Dermatitis; Autism; Benign Prostatic Hyperplasia; Carotid artery disease as a Quantitative Measure; caMRSA; Cataract; Clostridium difficile colitis; Extreme Obesity; Chronic Kidney Disease; Chronic Kidney Disease and Type 2 Diabetes; Chronic Kidney Disease, Type 2 Diabetes and Hypertension; Colon Polyps; Cardiorespiratory Fitness; Dementia; Diverticulosis; Diabetic retinopathy; Gastroesophageal Reflux Disease; Glaucoma; Height; Heart failure; Hypothyroidism; Lipids; Ocular hypertension; Peripheral Arterial Disease; QRS duration; Red blood cell indices; Remission of Diabetes after ROUX-EN-Y gastric bypass surgery; Resistant hypertension; MACE while on Statins; Type 2 Diabetes; Venous Thromboembolism; White blood cell indices; and Zoster virus infection, as well as using the phenome-wide association study (PheWAS) paradigm to replicate and discover relationships between targeted genotypes with multiple phenotypes.
Sites and participants include:
Children's Hospital of Pennsylvania (CHOP): The Center for Applied Genomics (CAG) at the Children's Hospital of Philadelphia (CHOP) is a high-throughput, highly automated genotyping and sequencing facility equipped with state-of-the-art genotyping and sequencing platforms. Children who are treated at the Children's Hospital Healthcare Network and their parents may be eligible to take part in a major initiative to collect more than 100,000 blood samples, covering a wide range of pediatric diseases. A large majority of participants consenting to prospective genomic analyses also consent to analysis of their de-identified electronic medical records (EMRs). EMRs are longitudinal, with a mean duration of 6.5 years.
Cincinnati Children's Hospital Medical Center/Boston's Children's Hospital (CCHMC/BCH): Cincinnati Children's Hospital Medical Center (CCHMC) and Boston Children's Hospital (BCH) are pediatric institutions dedicated to improving health and welfare of children and to the shared purpose of discovery and practical application of new genomic information to the ordinary care of children. The CCHMC/BCH site has been built on a five-year history of collaboration, particularly in patient electronic record (ERM)-related informatics, the basis of much of eMERGE II. CCHMC and BCH together bring an extraordinary faculty to eMERGE II who are committed to diseases that afflict children, specifically phenotypes that focus upon diseases of children in ways that will leverage the available eMERGE adult GWAS and EMRs to discover meaningful use results. CCHMC/BCH plans to demonstrate real-time execution of phenotypic selection across their two distinct pediatric institutions as a model for ensuring phenotypic standardization and for national scalability. They will also look carefully at parents' responses to results and use of their children's research results and better understand the factors that influence their decisions about learning incidental findings. In addition to patient and parent perceptions CCHMC/BCH will also explore clinician perceptions of pharmacogenetic research results after EMR integration.
Geisinger Health System: A research cohort of adult Geisinger Clinic patients was enrolled from community-based primary care clinics of the Geisinger Health System. Patients were eligible for enrollment if they were a primary care patient of a Geisinger Clinic physician and were scheduled for a non-emergent clinic visit. All participants provided written informed consent and HIPAA authorization. Consenting patients agreed to provide blood samples for broad biomedical research use, and permission to access data in their Geisinger electronic medical record for research. The enrollment rate was 90% of patients approached. The demographics of the cohort approximate those of the Geisinger Clinic outpatient population. Research blood samples were collected during an outpatient clinical phlebotomy encounter. Research blood samples are coded and stored in a central biorepository. Samples are linkable to clinical data in a de-identified manner for research via an IRB-approved data broker process. For genomic analysis, DNA is extracted from EDTA-anticoagulated whole blood.
Group Health(GH)/University of Washington (UW): GH participants for the PGx project were enrolled in the eMERGE Network through the Northwest Institute of Genetic Medicine (NWIGM) biorepository, and provided the appropriate consent to receive clinically relevant genetic results (N~6300.) Participants were eligible if aged 50 - 65 years old at the time of their enrollment into the NWIGM repository, living, enrolled in GH's integrated group practice, and had completed an online Health Risk Appraisal. The selection algorithm was based on several data sources from the EHR at Group Health: 1. Demographics - participants with self-reported race as Asian or African ancestry were prioritized and selected to enrich for non-European ancestry; 2. Diagnosis and procedure codes - participants were selected if found to have a history of hypertension, atrial fibrillation (AF), or congestive heart failure (CHF). Participants with a history of arrhythmia were added if the entire selection algorithm did not generate 900 individuals. We also enriched for participants with EHR evidence of actionable indications related to PGRNSeq genes. Participants were selected if found to have an ICD9 code for malignant hyperthermia, hypertension, atrial fibrillation, congestive heart failure or long QT syndrome (LQTS); 3. Laboratory values - if participants had any laboratory event of creatine kinase (CK) >1000, and were dispensed statins within 6 months of the event, then they were selected; and 4. Medications - participants were excluded if ever on carbamazepine or had a current regimen of warfarin.
Essentia Institute of Rural Health, Marshfield Clinic, Pennsylvania State University (Marshfield): The Marshfield Clinic Personalized Medicine Research Project is a population-based biobank in central Wisconsin with more than 20,000 adult subjects who provided written, informed consent to access their medical records and provided a blood sample from which DNA was extracted and plasma and serum stored. In addition to an average of 30 years of medical history data, a questionnaire about environmental exposures, including a detailed food frequency questionnaire, is available to facilitate gene/environment studies.
Mayo Clinic: The Mayo biobank is a disease-specific biobank for vascular diseases including peripheral arterial disease (PAD). PAD patients were identified from individuals referred to the non-invasive vascular laboratory for lower extremity arterial evaluation. Since 1997, laboratory findings have been recorded into an electronic database employing an in-house software package for data archiving and retrieval; this data becomes part of the Mayo EMR. Patients referred to the center with suspected PAD undergo a comprehensive non-invasive evaluation including the ankle-brachial index (ABI) - the ratio of blood pressure measured in the upper arms divided by blood pressure measured at the ankles. Controls subjects are identified from patients referred to the Cardiovascular Health Clinic for stress ECG. The prevalence of PAD in patients with normal exercise capacity who do not have inducible ischemia on the stress ECG , was <1%. Data regarding risk factors for atherosclerosis such as diabetes, dyslipidemia, hypertension, and smoking are ascertained from the EMR.
Icahn School of Medicine at Mount Sinai School (Mt. Sinai): The Institute for Personalized Medicine (IPM) Biobank Project is a consented, EMR-linked medical care setting biorepository of the Mount Sinai Medical Center (MSMC) drawing from a population of over 70,000 inpatients and 800,000 outpatient visits annually. MSMC serves diverse local communities of upper Manhattan, including Central Harlem (86% African American), East Harlem (88% Hispanic Latino), and Upper East Side (88% Caucasian/white) with broad health disparities. IPM Biobank populations include 28% African American (AA), 38% Hispanic Latino (HL) predominantly of Caribbean origin, 23% Caucasian/White (CW). IPM Biobank disease burden is reflective of health disparities with broad public health impact: average body mass index of 28.9 and frequencies of hypertension (55%), hypercholesterolemia (32%), diabetes (30%), coronary artery disease (25%), chronic kidney disease (23%), among others. Biobank operations are fully integrated in clinical care processes, including direct recruitment from clinical sites, waiting areas and phlebotomy stations by dedicated Biobank recruiters independent of clinical care providers, prior to or following a clinician standard of care visit. Recruitment currently occurs at a broad spectrum of over 30 clinical care sites.
Northwestern University: The NUgene Project is a repository with longitudinal medical information from participating patients at affiliated hospitals and outpatient clinics from the Northwestern University Medical Center. Participants' DNA samples are coupled with data from a self-reported questionnaire and continuously updated data from our Electronic Medical Record (EMR) representing actual clinical care events. Northwestern has a state-of-the art, comprehensive inpatient and outpatient EMR system of over 2 million patients. NUgene has broad access to participant data for all outpatient visits as well as inpatient data via a consolidated data warehouse. NUgene participants consent to distribution and use of their coded DNA samples and data for a broad range of genetic research by third-party investigators.
Vanderbilt University: BioVU, Vanderbilt's DNA databank, is an enabling resource for exploration of the relationships among genetic variation, disease susceptibility, and variable drug responses, and represents a key first step in moving the emerging sciences of genomics and pharmacogenomics from research tools to clinical practice. BioVU acquires DNA from discarded blood samples collected from routine patient care. The biobank is linked to de-identified clinical data extracted from Vanderbilt's EMR, which forms the basis for phenotype definitions used in genotype-phenotype correlations.
- Type: Case-Control
- Archiver: The database of Genotypes and Phenotypes (dbGaP)