Evolution of Chromatin Architecture and Transcriptional Regulation in Mammals
Changes in gene expression are a critical force driving the evolution of form and function. As a result, the mechanisms by which gene expression evolves have become a subject of intense interest. A number of investigators have measured evolutionary changes in gene expression at the chromatin, mRNA, and protein levels, leading to new insights about how species evolve. However, studies of different stages in gene expression have not always been in agreement. For example, the extremely rapid rates of evolutionary changes that have been widely observed at enhancers appear to conflict with the slower rates observed in mRNA abundance. We recently completed a major comparative study in primates showing that this disparity between enhancer and mRNA evolution, in part, reflects extensive compensation at enhancers that jointly determine transcription at target genes. Likewise, related findings have demonstrated that post-transcriptional changes buffer protein abundance to relatively more common differences in mRNA expression. Together, these recent findings demonstrate that evolutionary changes affecting multiple stages of transcriptional regulation often have interdependent effects on gene expression.