Targeted sequencing of Human esophageal epithelium microbiopsies
NOTCH1 mutant clones occupy the majority of normal human esophagus by middle age, but are comparatively rare in esophageal cancers, suggesting NOTCH1 mutations may promote clonal expansion but impede carcinogenesis. Here we test this hypothesis. Visualizing and sequencing NOTCH1 mutant clones in aging normal human esophagus, reveals frequent biallelic mutations that block NOTCH1 signaling. In mouse esophagus, heterozygous Notch1 mutation confers a competitive advantage over wild type cells, an effect enhanced by loss of the second allele. Notch1 loss alters transcription but has minimal effects on epithelial structure and cell dynamics. In a carcinogenesis model, Notch1 mutations were less prevalent in tumors than normal epithelium. Deletion of Notch1 reduced tumor growth, an effect recapitulated by anti-NOTCH1 antibody treatment. We conclude that Notch1 mutations in normal epithelium are beneficial as wild type Notch1 promotes tumor expansion. NOTCH1 blockade has therapeutic potential in esophageal squamous tumors.
- DAC: EGAC00001000000
- Technology: Illumina HiSeq 2500
- PUB DUO:0000019 (version: 2021-02-23)publication requiredThis data use modifier indicates that requestor agrees to make results of studies using the data available to the larger scientific community.
- US DUO:0000026 (version: 2021-02-23)user specific restrictionThis data use modifier indicates that use is limited to use by approved users.
- IS DUO:0000028 (version: 2021-02-23)institution specific restrictionThis data use modifier indicates that use is limited to use within an approved institution.
- GRU DUO:0000042 (version: 2021-02-23)general research useThis data use permission indicates that use is allowed for general research use for any research purpose.
Wellcome Trust Sanger Institute Cancer Genome Group Data Sharing Policy
Studies are experimental investigations of a particular phenomenon, e.g., case-control studies on a particular trait or cancer research projects reporting matching cancer normal genomes from patients.
Study ID | Study Title | Study Type |
---|---|---|
EGAS00001001933 | Other |
This table displays only public information pertaining to the files in the dataset. If you wish to access this dataset, please submit a request. If you already have access to these data files, please consult the download documentation.