Use the refinements panel to filter the search results by selecting one or more values from the refinement categories.
The AMBER Consortium Study was formed to pool interview data, questionnaire data, and biological samples from epidemiological studies of breast cancer in African-American women to discover the potential causes of early-onset and aggressive breast cancer in African-American women. AMBER is funded through a Program Project grant from the National Cancer Institute. Genetic data submitted to dbGaP come from participants in the Carolina Breast Cancer Study, Women's Circle of Health Study, and Black Women's Health Study. The P01 consists of four scientific projects; the aims include follow-up on previous GWAS findings for breast cancer susceptibility in AA women as well as investigation of SNPs in candidate genes in biologically plausible pathways. These SNPs were genotyped using DNA from 3130 African-American women with breast cancer and 3700 controls. Descriptions of the original studies that provided the data and samples for this collaborative study are given below. The Carolina Breast Cancer Study (CBCS): a North Carolina population-based case-control study of breast cancer, conducted in three phases. The current study phase, phase 3 (years 2008-2014), includes women residents in 44 counties. CBCS phases 1 and 2 were conducted in 24 counties. Breast cancer cases are identified using Rapid Case Ascertainment in cooperation with the NC Central Cancer Registry. Controls were identified for phases 1 and 2 only (1993-1996 and 1996-2001), using Division of Motor Vehicles lists for women under age 65 and Health Care Financing Administration lists for women 65 and older. Randomized recruitment was used to oversample AA women and women under age 50. In-depth interviews are conducted by study nurses in participants' homes to obtain information on potential risk factors for breast cancer. DNA samples have been obtained from most participants. Overall response rates for Phases 1 and 2 were 74% for AA cases and 54% for AA controls. Phase 3, conducted in 44 counties from 2008-2014, includes cases only. The response rate for AA cases in Phase 3 was 70.5%. The Women's Circle of Health Study (WCHS): a multi-site case-control study in New York City (NYC) and New Jersey (NJ) aimed at evaluating risk factors for early and aggressive breast cancer in women of AA and EA ancestry. Recruitment in NYC took place between January 2002 and December 2008 and involved hospital-based ascertainment of cases, while controls were identified through random digit dialing (RDD). Recruitment at the NJ site started in March 2006 and is ongoing. Phase I of the study ended in April 2012 and covered seven counties in NJ. WCHS2 includes two additional counties. Cases in NJ were identified from 2006 to 2012 by the NJ State Cancer Registry using rapid case ascertainment. Controls were initially recruited though RDD (2006 to 2010) and later through community-based efforts (2009-2012). In-person interviews ascertained data on established and suspected risk factors for breast cancer. DNA samples were obtained. Among eligible AA women, 75% in NY and 54% in NJ completed an interview and provided a biologic specimen. Black Women's Health Study (BWHS): an ongoing prospective cohort study of health and illness among U.S. black women, with a focus on cancer. The study began in 1995 when 59,000 AA women 21-69 years of age from across the United States completed a 14-page postal health questionnaire. The median age at entry was 38, and participants were residents of 17 states in mainland U.S.: Northeast, 28%; South, 30%; Midwest, 23%; West, 19%. The baseline questionnaire elicited information on a wide range of variables, including demographic factors, use of medical care, family history of breast cancer, reproductive and medical history, cigarette and alcohol use, weight, height, waist and hip circumference, medication use, diet, and exercise. Biennial follow-up questionnaires ascertain new cases of breast cancer and other illnesses and update covariate information. Medical record and cancer registry data are sought for all participants who report a diagnosis of breast cancer. As of 2014, approximately 80% of the baseline cohort have completed follow-up. DNA samples were obtained from about 50% of participants. BWHS data for the AMBER consortium were prepared as a nested case-control study, with controls frequency-matched to cases on year of birth, geographic region, and most recent questionnaire completed prior to the end of the at-risk period.
Original description of the study: From ELLIPSE (linked to the PRACTICAL consortium), we contributed ~78,000 SNPs to the OncoArray. A large fraction of the content was derived from the GWAS meta-analyses in European ancestry populations (overall and aggressive disease; ~27K SNPs). We also selected just over 10,000 SNPs from the meta-analyses in the non-European populations, with a majority of these SNPs coming from the analysis of overall prostate cancer in African ancestry populations as well as from the multiethnic meta-analysis. A substantial fraction of SNPs (~28,000) were also selected for fine-mapping of 53 loci not included in the common fine-mapping regions (tagging at r2>0.9 across ±500kb regions). We also selected a few thousand SNPs related with PSA levels and/or disease survival as well as SNPs from candidate lists provided by study collaborators, as well as from meta-analyses of exome SNP chip data from the Multiethnic Cohort and UK studies. The Contributing Studies: Aarhus: Hospital-based, Retrospective, Observational. Source of cases: Patients treated for prostate adenocarcinoma at Department of Urology, Aarhus University Hospital, Skejby (Aarhus, Denmark). Source of controls: Age-matched males treated for myocardial infarction or undergoing coronary angioplasty, but with no prostate cancer diagnosis based on information retrieved from the Danish Cancer Register and the Danish Cause of Death Register. AHS: Nested case-control study within prospective cohort. Source of cases: linkage to cancer registries in study states. Source of controls: matched controls from cohort ATBC: Prospective, nested case-control. Source of cases: Finnish male smokers aged 50-69 years at baseline. Source of controls: Finnish male smokers aged 50-69 years at baseline BioVu: Cases identified in a biobank linked to electronic health records. Source of cases: A total of 214 cases were identified in the VUMC de-identified electronic health records database (the Synthetic Derivative) and shipped to USC for genotyping in April 2014. The following criteria were used to identify cases: Age 18 or greater; male; African Americans (Black) only. Note that African ancestry is not self-identified, it is administratively or third-party assigned (which has been shown to be highly correlated with genetic ancestry for African Americans in BioVU; see references). Source of controls: Controls were identified in the de-identified electronic health record. Unfortunately, they were not age matched to the cases, and therefore cannot be used for this study. Canary PASS: Prospective, Multi-site, Observational Active Surveillance Study. Source of cases: clinic based from Beth Israel Deaconness Medical Center, Eastern Virginia Medical School, University of California at San Francisco, University of Texas Health Sciences Center San Antonio, University of Washington, VA Puget Sound. Source of controls: N/A CCI: Case series, Hospital-based. Source of cases: Cases identified through clinics at the Cross Cancer Institute. Source of controls: N/A CerePP French Prostate Cancer Case-Control Study (ProGene): Case-Control, Prospective, Observational, Hospital-based. Source of cases: Patients, treated in French departments of Urology, who had histologically confirmed prostate cancer. Source of controls: Controls were recruited as participating in a systematic health screening program and found unaffected (normal digital rectal examination and total PSA < 4 ng/ml, or negative biopsy if PSA > 4 ng/ml). COH: hospital-based cases and controls from outside. Source of cases: Consented prostate cancer cases at City of Hope. Source of controls: Consented unaffected males that were part of other studies where they consented to have their DNA used for other research studies. COSM: Population-based cohort. Source of cases: General population. Source of controls: General population CPCS1: Case-control - Denmark. Source of cases: Hospital referrals. Source of controls: Copenhagen General Population Study CPCS2: Source of cases: Hospital referrals. Source of controls: Copenhagen General Population Study CPDR: Retrospective cohort. Source of cases: Walter Reed National Military Medical Center. Source of controls: Walter Reed National Military Medical Center ACS_CPS-II: Nested case-control derived from a prospective cohort study. Source of cases: Identified through self-report on follow-up questionnaires and verified through medical records or cancer registries, identified through cancer registries or the National Death Index (with prostate cancer as the primary cause of death). Source of controls: Cohort participants who were cancer-free at the time of diagnosis of the matched case, also matched on age (±6 mo) and date of biospecimen donation (±6 mo). EPIC: Case-control - Germany, Greece, Italy, Netherlands, Spain, Sweden, UK. Source of cases: Identified through record linkage with population-based cancer registries in Italy, the Netherlands, Spain, Sweden and UK. In Germany and Greece, follow-up is active and achieved through checks of insurance records and cancer and pathology registries as well as via self-reported questionnaires; self-reported incident cancers are verified through medical records. Source of controls: Cohort participants without a diagnosis of cancer EPICAP: Case-control, Population-based, ages less than 75 years at diagnosis, Hérault, France. Source of cases: Prostate cancer cases in all public hospitals and private urology clinics of département of Hérault in France. Cases validation by the Hérault Cancer Registry. Source of controls: Population-based controls, frequency age matched (5-year groups). Quotas by socio-economic status (SES) in order to obtain a distribution by SES among controls identical to the SES distribution among general population men, conditionally to age. ERSPC: Population-based randomized trial. Source of cases: Men with PrCa from screening arm ERSPC Rotterdam. Source of controls: Men without PrCa from screening arm ERSPC Rotterdam ESTHER: Case-control, Prospective, Observational, Population-based. Source of cases: Prostate cancer cases in all hospitals in the state of Saarland, from 2001-2003. Source of controls: Random sample of participants from routine health check-up in Saarland, in 2000-2002 FHCRC: Population-based, case-control, ages 35-74 years at diagnosis, King County, WA, USA. Source of cases: Identified through the Seattle-Puget Sound SEER cancer registry. Source of controls: Randomly selected, age-frequency matched residents from the same county as cases Gene-PARE: Hospital-based. Source of cases: Patients that received radiotherapy for treatment of prostate cancer. Source of controls: n/a Hamburg-Zagreb: Hospital-based, Prospective. Source of cases: Prostate cancer cases seen at the Department of Oncology, University Hospital Center Zagreb, Croatia. Source of controls: Population-based (Croatia), healthy men, older than 50, with no medical record of cancer, and no family history of cancer (1st & 2nd degree relatives) HPFS: Nested case-control. Source of cases: Participants of the HPFS cohort. Source of controls: Participants of the HPFS cohort IMPACT: Observational. Source of cases: Carriers and non-carriers (with a known mutation in the family) of the BRCA1 and BRCA2 genes, aged between 40 and 69, who are undergoing prostate screening with annual PSA testing. This cohort has been diagnosed with prostate cancer during the study. Source of controls: Carriers and non-carriers (with a known mutation in the family) of the BRCA1 and BRCA2 genes, aged between 40 and 69, who are undergoing prostate screening with annual PSA testing. This cohort has not been diagnosed with prostate cancer during the study. IPO-Porto: Hospital-based. Source of cases: Early onset and/or familial prostate cancer. Source of controls: Blood donors Karuprostate: Case-control, Retrospective, Population-based. Source of cases: From FWI (Guadeloupe): 237 consecutive incident patients with histologically confirmed prostate cancer attending public and private urology clinics; From Democratic Republic of Congo: 148 consecutive incident patients with histologically confirmed prostate cancer attending the University Clinic of Kinshasa. Source of controls: From FWI (Guadeloupe): 277 controls recruited from men participating in a free systematic health screening program open to the general population; From Democratic Republic of Congo: 134 controls recruited from subjects attending the University Clinic of Kinshasa KULEUVEN: Hospital-based, Prospective, Observational. Source of cases: Prostate cancer cases recruited at the University Hospital Leuven. Source of controls: Healthy males with no history of prostate cancer recruited at the University Hospitals, Leuven. LAAPC: Subjects were participants in a population-based case-control study of aggressive prostate cancer conducted in Los Angeles County. Cases were identified through the Los Angeles County Cancer Surveillance Program rapid case ascertainment system. Eligible cases included African American, Hispanic, and non-Hispanic White men diagnosed with a first primary prostate cancer between January 1, 1999 and December 31, 2003. Eligible cases also had (a) prostatectomy with documented tumor extension outside the prostate, (b) metastatic prostate cancer in sites other than prostate, (c) needle biopsy of the prostate with Gleason grade ≥8, or (d) needle biopsy with Gleason grade 7 and tumor in more than two thirds of the biopsy cores. Eligible controls were men never diagnosed with prostate cancer, living in the same neighborhood as a case, and were frequency matched to cases on age (± 5 y) and race/ethnicity. Controls were identified by a neighborhood walk algorithm, which proceeds through an obligatory sequence of adjacent houses or residential units beginning at a specific residence that has a specific geographic relationship to the residence where the case lived at diagnosis. Malaysia: Case-control. Source of cases: Patients attended the outpatient urology or uro-onco clinic at University Malaya Medical Center. Source of controls: Population-based, age matched (5-year groups), ascertained through electoral register, Subang Jaya, Selangor, Malaysia MCC-Spain: Case-control. Source of cases: Identified through the urology departments of the participating hospitals. Source of controls: Population-based, frequency age and region matched, ascertained through the rosters of the primary health care centers MCCS: Nested case-control, Melbourne, Victoria. Source of cases: Identified by linkage to the Victorian Cancer Registry. Source of controls: Cohort participants without a diagnosis of cancer MD Anderson: Participants in this study were identified from epidemiological prostate cancer studies conducted at the University of Texas MD Anderson Cancer Center in the Houston Metropolitan area. Cases were accrued in the Houston Medical Center and were not restricted with respect to Gleason score, stage or PSA. Controls were identified via random-digit-dialing or among hospital visitors and they were frequency matched to cases on age and race. Lifestyle, demographic, and family history data were collected using a standardized questionnaire. MDACC_AS: A prospective cohort study. Source of cases: Men with clinically organ-confined prostate cancer meeting eligibility criteria for a prospective cohort study of active surveillance at MD Anderson Cancer Center. Source of controls: N/A MEC: The Multiethnic Cohort (MEC) is comprised of over 215,000 men and women recruited from Hawaii and the Los Angeles area between 1993 and 1996. Between 1995 and 2006, over 65,000 blood samples were collected from participants for genetic analyses. To identify incident cancer cases, the MEC was cross-linked with the population-based Surveillance, Epidemiology and End Results (SEER) registries in California and Hawaii, and unaffected cohort participants with blood samples were selected as controls MIAMI (WFPCS): Prostate cancer cases and controls were recruited from the Departments of Urology and Internal Medicine of the Wake Forest University School of Medicine using sequential patient populations as described previously (PMID:15342424). All study subjects received a detailed description of the study protocol and signed their informed consent, as approved by the medical center's Institutional Review Board. The general eligibility criteria were (i) able to comprehend informed consent and (ii) without previously diagnosed cancer. The exclusion criteria were (i) clinical diagnosis of autoimmune diseases; (ii) chronic inflammatory conditions; and (iii) infections within the past 6 weeks. Blood samples were collected from all subjects. MOFFITT: Hospital-based. Source of cases: clinic based from Moffitt Cancer Center. Source of controls: Moffitt Cancer Center affiliated Lifetime cancer screening center NMHS: Case-control, clinic based, Nashville TN. Source of cases: All urology clinics in Nashville, TN. Source of controls: Men without prostate cancer at prostate biopsy. PCaP: The North Carolina-Louisiana Prostate Cancer Project (PCaP) is a multidisciplinary population-based case-only study designed to address racial differences in prostate cancer through a comprehensive evaluation of social, individual and tumor level influences on prostate cancer aggressiveness. PCaP enrolled approximately equal numbers of African Americans and Caucasian Americans with newly-diagnosed prostate cancer from North Carolina (42 counties) and Louisiana (30 parishes) identified through state tumor registries. African American PCaP subjects with DNA, who agreed to future use of specimens for research, participated in OncoArray analysis. PCMUS: Case-control - Sofia, Bulgaria. Source of cases: Patients of Clinic of Urology, Alexandrovska University Hospital, Sofia, Bulgaria, PrCa histopathologically confirmed. Source of controls: 72 patients with verified BPH and PSA<3,5; 78 healthy controls from the MMC Biobank, no history of PrCa PHS: Nested case-control. Source of cases: Participants of the PHS1 trial/cohort. Source of controls: Participants of the PHS1 trial/cohort PLCO: Nested case-control. Source of cases: Men with a confirmed diagnosis of prostate cancer from the PLCO Cancer Screening Trial. Source of controls: Controls were men enrolled in the PLCO Cancer Screening Trial without a diagnosis of cancer at the time of case ascertainment. Poland: Case-control. Source of cases: men with unselected prostate cancer, diagnosed in north-western Poland at the University Hospital in Szczecin. Source of controls: cancer-free men from the same population, taken from the healthy adult patients of family doctors in the Szczecin region PROCAP: Population-based, Retrospective, Observational. Source of cases: Cases were ascertained from the National Prostate Cancer Register of Sweden Follow-Up Study, a retrospective nationwide cohort study of patients with localized prostate cancer. Source of controls: Controls were selected among men referred for PSA testing in laboratories in Stockholm County, Sweden, between 2010 and 2012. PROGReSS: Hospital-based, Prospective, Observational. Source of cases: Prostate cancer cases from the Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain. Source of controls: Cancer-free men from the same population ProMPT: A study to collect samples and data from subjects with and without prostate cancer. Retrospective, Experimental. Source of cases: Subjects attending outpatient clinics in hospitals. Source of controls: Subjects attending outpatient clinics in hospitals ProtecT: Trial of treatment. Samples taken from subjects invited for PSA testing from the community at nine centers across United Kingdom. Source of cases: Subjects who have a proven diagnosis of prostate cancer following testing. Source of controls: Identified through invitation of subjects in the community. PROtEuS: Case-control, population-based. Source of cases: All new histologically-confirmed cases, aged less or equal to 75 years, diagnosed between 2005 and 2009, actively ascertained across Montreal French hospitals. Source of controls: Randomly selected from the Provincial electoral list of French-speaking men between 2005 and 2009, from the same area of residence as cases and frequency-matched on age. QLD: Case-control. Source of cases: A longitudinal cohort study (Prostate Cancer Supportive Care and Patient Outcomes Project: ProsCan) conducted in Queensland, through which men newly diagnosed with prostate cancer from 26 private practices and 10 public hospitals were directly referred to ProsCan at the time of diagnosis by their treating clinician (age range 43-88 years). All cases had histopathologically confirmed prostate cancer, following presentation with an abnormal serum PSA and/or lower urinary tract symptoms. Source of controls: Controls comprised healthy male blood donors with no personal history of prostate cancer, recruited through (i) the Australian Red Cross Blood Services in Brisbane (age range 19-76 years) and (ii) the Australian Electoral Commission (AEC) (age and post-code/ area matched to ProsCan, age range 54-90 years). RAPPER: Multi-centre, hospital based blood sample collection study in patients enrolled in clinical trials with prospective collection of radiotherapy toxicity data. Source of cases: Prostate cancer patients enrolled in radiotherapy trials: CHHiP, RT01, Dose Escalation, RADICALS, Pelvic IMRT, PIVOTAL. Source of controls: N/A SABOR: Prostate Cancer Screening Cohort. Source of cases: Men >45 yrs of age participating in annual PSA screening. Source of controls: Males participating in annual PSA prostate cancer risk evaluations (funded by NCI biomarkers discovery and validation grant), recruited through University of Texas Health Science Center at San Antonio and affiliated sites or through study advertisements, enrolment open to the community SCCS: Case-control in cohort, Southeastern USA. Prospective, Observational, Population-based. Source of cases: SCCS entry population. Source of controls: SCCS entry population SCPCS: Population-based, Retrospective, Observational. Source of cases: South Carolina Central Cancer Registry. Source of controls: Health Care Financing Administration beneficiary file SEARCH: Case-control - East Anglia, UK. Source of cases: Men < 70 years of age registered with prostate cancer at the population-based cancer registry, Eastern Cancer Registration and Information Centre, East Anglia, UK. Source of controls: Men attending general practice in East Anglia with no known prostate cancer diagnosis, frequency matched to cases by age and geographic region SNP_Prostate_Ghent: Hospital-based, Retrospective, Observational. Source of cases: Men treated with IMRT as primary or postoperative treatment for prostate cancer at the Ghent University Hospital between 2000 and 2010. Source of controls: Employees of the University hospital and members of social activity clubs, without a history of any cancer. SPAG: Hospital-based, Retrospective, Observational. Source of cases: Guernsey. Source of controls: Guernsey STHM2: Population-based, Retrospective, Observational. Source of cases: Cases were selected among men referred for PSA testing in laboratories in Stockholm County, Sweden, between 2010 and 2012. Source of controls: Controls were selected among men referred for PSA testing in laboratories in Stockholm County, Sweden, between 2010 and 2012. PCPT: Case-control from a randomized clinical trial. Source of cases: Randomized clinical trial. Source of controls: Randomized clinical trial SELECT: Case-cohort from a randomized clinical trial. Source of cases: Randomized clinical trial. Source of controls: Randomized clinical trial TAMPERE: Case-control - Finland, Retrospective, Observational, Population-based. Source of cases: Identified through linkage to the Finnish Cancer Registry and patient records; and the Finnish arm of the ERSPC study. Source of controls: Cohort participants without a diagnosis of cancer UGANDA: Uganda Prostate Cancer Study: Uganda is a case-control study of prostate cancer in Kampala Uganda that was initiated in 2011. Men with prostate cancer were enrolled from the Urology unit at Mulago Hospital and men without prostate cancer (i.e. controls) were enrolled from other clinics (i.e. surgery) at the hospital. UKGPCS: ICR, UK. Source of cases: Cases identified through clinics at the Royal Marsden hospital and nationwide NCRN hospitals. Source of controls: Ken Muir's control- 2000 ULM: Case-control - Germany. Source of cases: familial cases (n=162): identified through questionnaires for family history by collaborating urologists all over Germany; sporadic cases (n=308): prostatectomy series performed in the Clinic of Urology Ulm between 2012 and 2014. Source of controls: age-matched controls (n=188): age-matched men without prostate cancer and negative family history collected in hospitals of Ulm WUGS/WUPCS: Cases Series, USA. Source of cases: Identified through clinics at Washington University in St. Louis. Source of controls: Men diagnosed and managed with prostate cancer in University based clinic. Acknowledgement Statements: Aarhus: This study was supported by the Danish Strategic Research Council (now Innovation Fund Denmark) and the Danish Cancer Society. The Danish Cancer Biobank (DCB) is acknowledged for biological material. AHS: This work was supported by the Intramural Research Program of the NIH, National Cancer Institute, Division of Cancer Epidemiology and Genetics (Z01CP010119). ATBC: This research was supported in part by the Intramural Research Program of the NIH and the National Cancer Institute. Additionally, this research was supported by U.S. Public Health Service contracts N01-CN-45165, N01-RC-45035, N01-RC-37004, HHSN261201000006C, and HHSN261201500005C from the National Cancer Institute, Department of Health and Human Services. BioVu: The dataset(s) used for the analyses described were obtained from Vanderbilt University Medical Center's BioVU which is supported by institutional funding and by the National Center for Research Resources, Grant UL1 RR024975-01 (which is now at the National Center for Advancing Translational Sciences, Grant 2 UL1 TR000445-06). Canary PASS: PASS was supported by Canary Foundation and the National Cancer Institute's Early Detection Research Network (U01 CA086402) CCI: This work was awarded by Prostate Cancer Canada and is proudly funded by the Movember Foundation - Grant # D2013-36.The CCI group would like to thank David Murray, Razmik Mirzayans, and April Scott for their contribution to this work. CerePP French Prostate Cancer Case-Control Study (ProGene): None reported COH: SLN is partially supported by the Morris and Horowitz Families Endowed Professorship COSM: The Swedish Research Council, the Swedish Cancer Foundation CPCS1 & CPCS2: Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev Ringvej 75, DK-2730 Herlev, DenmarkCPCS1 would like to thank the participants and staff of the Copenhagen General Population Study for their important contributions. CPDR: Uniformed Services University for the Health Sciences HU0001-10-2-0002 (PI: David G. McLeod, MD) CPS-II: The American Cancer Society funds the creation, maintenance, and updating of the Cancer Prevention Study II cohort. CPS-II thanks the participants and Study Management Group for their invaluable contributions to this research. We would also like to acknowledge the contribution to this study from central cancer registries supported through the Centers for Disease Control and Prevention National Program of Cancer Registries, and cancer registries supported by the National Cancer Institute Surveillance Epidemiology and End Results program. EPIC: The coordination of EPIC is financially supported by the European Commission (DG-SANCO) and the International Agency for Research on Cancer. The national cohorts are supported by the Danish Cancer Society (Denmark); the Deutsche Krebshilfe, Deutsches Krebsforschungszentrum and Federal Ministry of Education and Research (Germany); the Hellenic Health Foundation, Greek Ministry of Health; Greek Ministry of Education (Greece); the Italian Association for Research on Cancer (AIRC) and National Research Council (Italy); the Dutch Ministry of Public Health, Welfare and Sports (VWS), Netherlands Cancer Registry (NKR), LK Research Funds, Dutch Prevention Funds, Dutch ZON (Zorg Onderzoek Nederland), World Cancer Research Fund (WCRF); the Statistics Netherlands (The Netherlands); the Health Research Fund (FIS), Regional Governments of Andalucía, Asturias, Basque Country, Murcia and Navarra, Spanish Ministry of Health ISCIII RETIC (RD06/0020), Red de Centros RCESP, C03/09 (Spain); the Swedish Cancer Society, Swedish Scientific Council and Regional Government of Skåne and Västerbotten, Fundacion Federico SA (Sweden); the Cancer Research UK, Medical Research Council (United Kingdom). EPICAP: The EPICAP study was supported by grants from Ligue Nationale Contre le Cancer, Ligue départementale du Val de Marne; Fondation de France; Agence Nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES). The EPICAP study group would like to thank all urologists, Antoinette Anger and Hasina Randrianasolo (study monitors), Anne-Laure Astolfi, Coline Bernard, Oriane Noyer, Marie-Hélène De Campo, Sandrine Margaroline, Louise N'Diaye, and Sabine Perrier-Bonnet (Clinical Research nurses). ERSPC: This study was supported by the DutchCancerSociety (KWF94-869,98-1657,2002-277,2006-3518, 2010-4800), The Netherlands Organisation for Health Research and Development (ZonMW-002822820, 22000106, 50-50110-98-311, 62300035), The Dutch Cancer Research Foundation (SWOP), and an unconditional grant from Beckman-Coulter-HybritechInc. ESTHER: The ESTHER study was supported by a grant from the Baden Württemberg Ministry of Science, Research and Arts. The ESTHER group would like to thank Hartwig Ziegler, Sonja Wolf, Volker Hermann, Heiko Müller, Karina Dieffenbach, Katja Butterbach for valuable contributions to the study. FHCRC: The FHCRC studies were supported by grants R01-CA056678, R01-CA082664, and R01-CA092579 from the US National Cancer Institute, National Institutes of Health, with additional support from the Fred Hutchinson Cancer Research Center. FHCRC would like to thank all the men who participated in these studies. Gene-PARE: The Gene-PARE study was supported by grants 1R01CA134444 from the U.S. National Institutes of Health, PC074201 and W81XWH-15-1-0680 from the Prostate Cancer Research Program of the Department of Defense and RSGT-05-200-01-CCE from the American Cancer Society. Hamburg-Zagreb: None reported HPFS: The Health Professionals Follow-up Study was supported by grants UM1CA167552, CA133891, CA141298, and P01CA055075. HPFS are grateful to the participants and staff of the Physicians' Health Study and Health Professionals Follow-Up Study for their valuable contributions, as well as the following state cancer registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, and WY. IMPACT: The IMPACT study was funded by The Ronald and Rita McAulay Foundation, CR-UK Project grant (C5047/A1232), Cancer Australia, AICR Netherlands A10-0227, Cancer Australia and Cancer Council Tasmania, NIHR, EU Framework 6, Cancer Councils of Victoria and South Australia, and Philanthropic donation to Northshore University Health System. We acknowledge support from the National Institute for Health Research (NIHR) to the Biomedical Research Centre at The Institute of Cancer Research and Royal Marsden Foundation NHS Trust. IMPACT acknowledges the IMPACT study steering committee, collaborating centres, and participants. IPO-Porto: The IPO-Porto study was funded by Fundaçäo para a Ciência e a Tecnologia (FCT; UID/DTP/00776/2013 and PTDC/DTP-PIC/1308/2014) and by IPO-Porto Research Center (CI-IPOP-16-2012 and CI-IPOP-24-2015). MC and MPS are research fellows from Liga Portuguesa Contra o Cancro, Núcleo Regional do Norte. SM is a research fellow from FCT (SFRH/BD/71397/2010). IPO-Porto would like to express our gratitude to all patients and families who have participated in this study. Karuprostate: The Karuprostate study was supported by the the Frech National Health Directorate and by the Association pour la Recherche sur les Tumeurs de la ProstateKarusprostate thanks Séverine Ferdinand. KULEUVEN: F.C. and S.J. are holders of grants from FWO Vlaanderen (G.0684.12N and G.0830.13N), the Belgian federal government (National Cancer Plan KPC_29_023), and a Concerted Research Action of the KU Leuven (GOA/15/017). TVDB is holder of a doctoral fellowship of the FWO. LAAPC: This study was funded by grant R01CA84979 (to S.A. Ingles) from the National Cancer Institute, National Institutes of Health. Malaysia: The study was funded by the University Malaya High Impact Research Grant (HIR/MOHE/MED/35). Malaysia thanks all associates in the Urology Unit, University of Malaya, Cancer Research Initiatives Foundation (CARIF) and the Malaysian Men's Health Initiative (MMHI). MCCS: MCCS cohort recruitment was funded by VicHealth and Cancer Council Victoria. The MCCS was further supported by Australian NHMRC grants 209057, 251553, and 504711, and by infrastructure provided by Cancer Council Victoria. Cases and their vital status were ascertained through the Victorian Cancer Registry (VCR) and the Australian Institute of Health and Welfare (AIHW), including the National Death Index and the Australian Cancer Database. MCC-Spain: The study was partially funded by the Accion Transversal del Cancer, approved on the Spanish Ministry Council on the 11th October 2007, by the Instituto de Salud Carlos III-FEDER (PI08/1770, PI09/00773-Cantabria, PI11/01889-FEDER, PI12/00265, PI12/01270, and PI12/00715), by the Fundación Marqués de Valdecilla (API 10/09), by the Spanish Association Against Cancer (AECC) Scientific Foundation and by the Catalan Government DURSI grant 2009SGR1489. Samples: Biological samples were stored at the Parc de Salut MAR Biobank (MARBiobanc; Barcelona) which is supported by Instituto de Salud Carlos III FEDER (RD09/0076/00036). Also sample collection was supported by the Xarxa de Bancs de Tumors de Catalunya sponsored by Pla Director d'Oncologia de Catalunya (XBTC). MCC-Spain acknowledges the contribution from Esther Gracia-Lavedan in preparing the data. We thank all the subjects who participated in the study and all MCC-Spain collaborators. MD Anderson: Prostate Cancer Case-Control Studies at MD Anderson (MDA) supported by grants CA68578, ES007784, DAMD W81XWH-07-1-0645, and CA140388. MDACC_AS: None reported MEC: Funding provided by NIH grant U19CA148537 and grant U01CA164973. MIAMI (WFPCS): ACS MOFFITT: The Moffitt group was supported by the US National Cancer Institute (R01CA128813, PI: J.Y. Park). NMHS: Funding for the Nashville Men's Health Study (NMHS) was provided by the National Institutes of Health Grant numbers: RO1CA121060. PCaP only data: The North Carolina - Louisiana Prostate Cancer Project (PCaP) is carried out as a collaborative study supported by the Department of Defense contract DAMD 17-03-2-0052. For HCaP-NC follow-up data: The Health Care Access and Prostate Cancer Treatment in North Carolina (HCaP-NC) study is carried out as a collaborative study supported by the American Cancer Society award RSGT-08-008-01-CPHPS. For studies using both PCaP and HCaP-NC follow-up data please use: The North Carolina - Louisiana Prostate Cancer Project (PCaP) and the Health Care Access and Prostate Cancer Treatment in North Carolina (HCaP-NC) study are carried out as collaborative studies supported by the Department of Defense contract DAMD 17-03-2-0052 and the American Cancer Society award RSGT-08-008-01-CPHPS, respectively. For any PCaP data, please include: The authors thank the staff, advisory committees and research subjects participating in the PCaP study for their important contributions. For studies using PCaP DNA/genotyping data, please include: We would like to acknowledge the UNC BioSpecimen Facility and LSUHSC Pathology Lab for our DNA extractions, blood processing, storage and sample disbursement (https://genome.unc.edu/bsp). For studies using PCaP tissue, please include: We would like to acknowledge the RPCI Department of Urology Tissue Microarray and Immunoanalysis Core for our tissue processing, storage and sample disbursement. For studies using HCaP-NC follow-up data, please use: The Health Care Access and Prostate Cancer Treatment in North Carolina (HCaP-NC) study is carried out as a collaborative study supported by the American Cancer Society award RSGT-08-008-01-CPHPS. The authors thank the staff, advisory committees and research subjects participating in the HCaP-NC study for their important contributions. For studies that use both PCaP and HCaP-NC, please use: The authors thank the staff, advisory committees and research subjects participating in the PCaP and HCaP-NC studies for their important contributions. PCMUS: The PCMUS study was supported by the Bulgarian National Science Fund, Ministry of Education and Science (contract DOO-119/2009; DUNK01/2-2009; DFNI-B01/28/2012) with additional support from the Science Fund of Medical University - Sofia (contract 51/2009; 8I/2009; 28/2010). PHS: The Physicians' Health Study was supported by grants CA34944, CA40360, CA097193, HL26490, and HL34595. PHS members are grateful to the participants and staff of the Physicians' Health Study and Health Professionals Follow-Up Study for their valuable contributions, as well as the following state cancer registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, and WY. PLCO: This PLCO study was supported by the Intramural Research Program of the Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIHPLCO thanks Drs. Christine Berg and Philip Prorok, Division of Cancer Prevention at the National Cancer Institute, the screening center investigators and staff of the PLCO Cancer Screening Trial for their contributions to the PLCO Cancer Screening Trial. We thank Mr. Thomas Riley, Mr. Craig Williams, Mr. Matthew Moore, and Ms. Shannon Merkle at Information Management Services, Inc., for their management of the data and Ms. Barbara O'Brien and staff at Westat, Inc. for their contributions to the PLCO Cancer Screening Trial. We also thank the PLCO study participants for their contributions to making this study possible. Poland: None reported PROCAP: PROCAP was supported by the Swedish Cancer Foundation (08-708, 09-0677). PROCAP thanks and acknowledges all of the participants in the PROCAP study. We thank Carin Cavalli-Björkman and Ami Rönnberg Karlsson for their dedicated work in the collection of data. Michael Broms is acknowledged for his skilful work with the databases. KI Biobank is acknowledged for handling the samples and for DNA extraction. We acknowledge The NPCR steering group: Pär Stattin (chair), Anders Widmark, Stefan Karlsson, Magnus Törnblom, Jan Adolfsson, Anna Bill-Axelson, Ove Andrén, David Robinson, Bill Pettersson, Jonas Hugosson, Jan-Erik Damber, Ola Bratt, Göran Ahlgren, Lars Egevad, and Roy Ehrnström. PROGReSS: The PROGReSS study is founded by grants from the Spanish Ministry of Health (INT15/00070; INT16/00154; FIS PI10/00164, FIS PI13/02030; FIS PI16/00046); the Spanish Ministry of Economy and Competitiveness (PTA2014-10228-I), and Fondo Europeo de Desarrollo Regional (FEDER 2007-2013). ProMPT: Founded by CRUK, NIHR, MRC, Cambride Biomedical Research Centre ProtecT: Founded by NIHR. ProtecT and ProMPT would like to acknowledge the support of The University of Cambridge, Cancer Research UK. Cancer Research UK grants (C8197/A10123) and (C8197/A10865) supported the genotyping team. We would also like to acknowledge the support of the National Institute for Health Research which funds the Cambridge Bio-medical Research Centre, Cambridge, UK. We would also like to acknowledge the support of the National Cancer Research Prostate Cancer: Mechanisms of Progression and Treatment (PROMPT) collaborative (grant code G0500966/75466) which has funded tissue and urine collections in Cambridge. We are grateful to staff at the Welcome Trust Clinical Research Facility, Addenbrooke's Clinical Research Centre, Cambridge, UK for their help in conducting the ProtecT study. We also acknowledge the support of the NIHR Cambridge Biomedical Research Centre, the DOH HTA (ProtecT grant), and the NCRI/MRC (ProMPT grant) for help with the bio-repository. The UK Department of Health funded the ProtecT study through the NIHR Health Technology Assessment Programme (projects 96/20/06, 96/20/99). The ProtecT trial and its linked ProMPT and CAP (Comparison Arm for ProtecT) studies are supported by Department of Health, England; Cancer Research UK grant number C522/A8649, Medical Research Council of England grant number G0500966, ID 75466, and The NCRI, UK. The epidemiological data for ProtecT were generated though funding from the Southwest National Health Service Research and Development. DNA extraction in ProtecT was supported by USA Dept of Defense award W81XWH-04-1-0280, Yorkshire Cancer Research and Cancer Research UK. The authors would like to acknowledge the contribution of all members of the ProtecT study research group. The views and opinions expressed therein are those of the authors and do not necessarily reflect those of the Department of Health of England. The bio-repository from ProtecT is supported by the NCRI (ProMPT) Prostate Cancer Collaborative and the Cambridge BMRC grant from NIHR. We thank the National Institute for Health Research, Hutchison Whampoa Limited, the Human Research Tissue Bank (Addenbrooke's Hospital), and Cancer Research UK. PROtEuS: PROtEuS was supported financially through grants from the Canadian Cancer Society (13149, 19500, 19864, 19865) and the Cancer Research Society, in partnership with the Ministère de l'enseignement supérieur, de la recherche, de la science et de la technologie du Québec, and the Fonds de la recherche du Québec - Santé.PROtEuS would like to thank its collaborators and research personnel, and the urologists involved in subjects recruitment. We also wish to acknowledge the special contribution made by Ann Hsing and Anand Chokkalingam to the conception of the genetic component of PROtEuS. QLD: The QLD research is supported by The National Health and Medical Research Council (NHMRC) Australia Project Grants (390130, 1009458) and NHMRC Career Development Fellowship and Cancer Australia PdCCRS funding to J Batra. The QLD team would like to acknowledge and sincerely thank the urologists, pathologists, data managers and patient participants who have generously and altruistically supported the QLD cohort. RAPPER: RAPPER is funded by Cancer Research UK (C1094/A11728; C1094/A18504) and Experimental Cancer Medicine Centre funding (C1467/A7286). The RAPPER group thank Rebecca Elliott for project management. SABOR: The SABOR research is supported by NIH/NCI Early Detection Research Network, grant U01 CA0866402-12. Also supported by the Cancer Center Support Grant to the Cancer Therapy and Research Center from the National Cancer Institute (US) P30 CA054174. SCCS: SCCS is funded by NIH grant R01 CA092447, and SCCS sample preparation was conducted at the Epidemiology Biospecimen Core Lab that is supported in part by the Vanderbilt-Ingram Cancer Center (P30 CA68485). Data on SCCS cancer cases used in this publication were provided by the Alabama Statewide Cancer Registry; Kentucky Cancer Registry, Lexington, KY; Tennessee Department of Health, Office of Cancer Surveillance; Florida Cancer Data System; North Carolina Central Cancer Registry, North Carolina Division of Public Health; Georgia Comprehensive Cancer Registry; Louisiana Tumor Registry; Mississippi Cancer Registry; South Carolina Central Cancer Registry; Virginia Department of Health, Virginia Cancer Registry; Arkansas Department of Health, Cancer Registry, 4815 W. Markham, Little Rock, AR 72205. The Arkansas Central Cancer Registry is fully funded by a grant from National Program of Cancer Registries, Centers for Disease Control and Prevention (CDC). Data on SCCS cancer cases from Mississippi were collected by the Mississippi Cancer Registry which participates in the National Program of Cancer Registries (NPCR) of the Centers for Disease Control and Prevention (CDC). The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of the CDC or the Mississippi Cancer Registry. SCPCS: SCPCS is funded by CDC grant S1135-19/19, and SCPCS sample preparation was conducted at the Epidemiology Biospecimen Core Lab that is supported in part by the Vanderbilt-Ingram Cancer Center (P30 CA68485). SEARCH: SEARCH is funded by a program grant from Cancer Research UK (C490/A10124) and supported by the UK National Institute for Health Research Biomedical Research Centre at the University of Cambridge. SNP_Prostate_Ghent: The study was supported by the National Cancer Plan, financed by the Federal Office of Health and Social Affairs, Belgium. SPAG: Wessex Medical ResearchHope for Guernsey, MUG, HSSD, MSG, Roger Allsopp STHM2: STHM2 was supported by grants from The Strategic Research Programme on Cancer (StratCan), Karolinska Institutet; the Linné Centre for Breast and Prostate Cancer (CRISP, number 70867901), Karolinska Institutet; The Swedish Research Council (number K2010-70X-20430-04-3) and The Swedish Cancer Society (numbers 11-0287 and 11-0624); Stiftelsen Johanna Hagstrand och Sigfrid Linnérs minne; Swedish Council for Working Life and Social Research (FAS), number 2012-0073STHM2 acknowledges the Karolinska University Laboratory, Aleris Medilab, Unilabs and the Regional Prostate Cancer Registry for performing analyses and help to retrieve data. Carin Cavalli-Björkman and Britt-Marie Hune for their enthusiastic work as research nurses. Astrid Björklund for skilful data management. We wish to thank the BBMRI.se biobank facility at Karolinska Institutet for biobank services. PCPT & SELECT are funded by Public Health Service grants U10CA37429 and 5UM1CA182883 from the National Cancer Institute. SWOG and SELECT thank the site investigators and staff and, most importantly, the participants who donated their time to this trial. TAMPERE: The Tampere (Finland) study was supported by the Academy of Finland (251074), The Finnish Cancer Organisations, Sigrid Juselius Foundation, and the Competitive Research Funding of the Tampere University Hospital (X51003). The PSA screening samples were collected by the Finnish part of ERSPC (European Study of Screening for Prostate Cancer). TAMPERE would like to thank Riina Liikanen, Liisa Maeaettaenen and Kirsi Talala for their work on samples and databases. UGANDA: None reported UKGPCS: UKGPCS would also like to thank the following for funding support: The Institute of Cancer Research and The Everyman Campaign, The Prostate Cancer Research Foundation, Prostate Research Campaign UK (now Prostate Action), The Orchid Cancer Appeal, The National Cancer Research Network UK, The National Cancer Research Institute (NCRI) UK. We are grateful for support of NIHR funding to the NIHR Biomedical Research Centre at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust. UKGPCS should also like to acknowledge the NCRN nurses, data managers, and consultants for their work in the UKGPCS study. UKGPCS would like to thank all urologists and other persons involved in the planning, coordination, and data collection of the study. ULM: The Ulm group received funds from the German Cancer Aid (Deutsche Krebshilfe). WUGS/WUPCS: WUGS would like to thank the following for funding support: The Anthony DeNovi Fund, the Donald C. McGraw Foundation, and the St. Louis Men's Group Against Cancer.
The Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO) is a collaborative effort comprised of a coordinating center and scientific researchers from well-characterized cohort and case-control studies conducted in North America and Europe. This international consortium aims to accelerate the discovery of common and rare genetic risk variants for colorectal cancer by conducting large-scale meta-analyses of existing and newly generated genome-wide association study (GWAS) data, replicating and fine-mapping of GWAS discoveries, and investigating how genetic risk variants are modified by environmental risk factors. To expand these efforts, we assembled case-control sets or nested case-control sets from 20 different North American or European studies. Summary descriptions and study participant inclusions/exclusion criteria for each of these studies are detailed below. The Black Women's Health Study (BWHS): Is the largest follow-up study of the health of African-American women (Cozier et al., 2004; Rosenberg et al., 1995) [PMID: 15018884; PMID: 7722208]. The purpose is to identify and evaluate causes and preventives of cancers and other serious illnesses in African-American women. Among the diseases being studied are breast cancer, colorectal cancer, type 2 diabetes, uterine fibroids, systemic lupus erythematosus, and cardiovascular disease. The study began in 1995, when 59,000 black women from all parts of the United States enrolled through postal questionnaires. The women provided demographic and health data on the 1995 baseline questionnaire, including information on weight, height, smoking, drinking, contraceptive use, use of other selected medications, illnesses, reproductive history, physical activity, diet, use of health care, and other factors. The participants are followed through biennial questionnaires to determine the occurrence of cancers and other illnesses and to update information on risk factors. Self-reports of cancer are confirmed through medical records and state cancer registry records. Mouthwash-swish samples, as a source of DNA, were obtained from ~26,000 BWHS participants in 2002-2007. DNA was isolated from the mouthwash-swish samples at the Boston University Molecular Core Genetics Laboratory using the QIAAMP DNA Mini Kit (Qiagen). All incident colorectal cancer cases with a DNA sample were included in the present analysis. Two controls per case, selected from among BWHS participants free of colorectal cancer at end of follow-up, were matched to cases on year of birth (+/- 2 years) and geographical region of residence (Northeast, South, Midwest, and West). A total 209 colorectal cancer cases and 423 controls were sent for genotyping. Campaign Against Cancer and Heart Disease (CLUE II): The Campaign Against Cancer and Heart Disease, is a prospective cohort designed to identify biomarkers and other factors associated with risk of cancer, heart disease, and other conditions (Kakourou et al., 2015) [PMID: 26220152]. 32,894 participants were recruited from May through October 1989 from Washington County, Maryland and surrounding communities. Colorectal cancer cases (n = 297) and matched controls (n = 296) were identified between 1989 and 2000 among participants in the CLUE II cohort of Washington County, Maryland. Colorectal Cancer Study of Austria (CORSA): In the ongoing colorectal cancer study of Austria (CORSA), more than 13,000 Caucasian participants have been recruited within the province-wide screening project "Burgenland Prevention Trial of Colorectal Disease with Immunological Testing" (B-PREDICT) since 2003 (Hofer et al., 2011) [PMID: 21422235]. All inhabitants of the Austrian province Burgenland aged between 40 and 80 years are annually invited to participate in fecal immunochemical testing and haemoccult positive screening participants are invited for colonoscopy. CORSA includes genomic DNA and plasma of colorectal cancer cases, low-risk and high-risk adenomas, and colonoscopy-negative controls. Controls received a complete colonoscopy and were free of colorectal cancer or polyps. CORSA participants have been recruited in the four KRAGES hospitals in Burgenland, Austria, and additionally, at the Medical University of Vienna (Department of Surgery), the Viennese hospitals "Rudolfstiftung" and the "Sozialmedizinisches Zentrum Sud", and at the Medical University of Graz (Department of Internal Medicine). 1403 colorectal cancer and advanced colorectal adenoma cases, and 1404 matched controls were selected for the study. Distribution of factors sex and age (5 year strata) were evenly matched between cases and controls. Cancer Prevention Study II (CPS II): The CPS II Nutrition cohort is a prospective study of cancer incidence and mortality in the United States, established in 1992 and described in detail elsewhere (Calle et al., 2002; Campbell et al., 2014) [PMID: 12015775; PMID: 25472679]. At enrollment, participants completed a mailed self-administered questionnaire including information on demographic, medical, diet, and lifestyle factors. Follow-up questionnaires to update exposure information and to ascertain newly diagnosed cancers were sent biennially starting in 1997. Reported cancers were verified through medical records, state cancer registry linkage, or death certificates. The Emory University Institutional Review Board approves all aspects of the CPS II Nutrition Cohort. A total of 360 cases and 359 controls were selected for this study. Czech Republic Colorectal Cancer Study (Czech Republic CCS): Cases with positive colonoscopy results for malignancy, confirmed by histology as colon or rectal carcinomas, were recruited between September 2003 and May 2012 in several oncological departments in the Czech Republic (Prague, Pilsen, Benesov, Brno, Liberec, Ples, Pribram, Usti and Labem, and Zlin). Two control groups, sampled at the same time of cases recruitment, were included in the study. The first group consisted of hospital-based individuals with a negative colonoscopy result for malignancy or idiopathic bowel diseases. The reasons for the colonoscopy were: i) positive fecal occult blood test, ii) hemorrhoids, iii) abdominal pain of unknown origin, and iv) macroscopic bleeding. The second control group consisted of healthy blood donor volunteers from a blood donor center in Prague. All individuals were subjected to standard examinations to verify the health status for blood donation and were cancer-free at the time of the sampling. Details of CRC cases and controls have been reported previously (Vymetalkova et al., 2014; Naccarati et al., 2016; Vymetalkova et al., 2016) [PMID: 24755277; PMID: 26735576; PMID: 27803053]. All subjects were informed and provided written consent to participate in the study. They approved the use of their biological samples for genetic analyses, according to the Declaration of Helsinki. The design of the study was approved by the Ethics Committee of the Institute of Experimental Medicine, Prague, Czech Republic. All subjects included in the study were Caucasians and comprised 1792 cases and 1764 matched controls. Controls were matched to CRC cases as 1:1 ratio. Matching was done on age and sex. Age was matched on +-5 years, whereas sex was matched exactly. For the cases without matched controls, matching was done only on sex. Early Detection Research Network (EDRN): The aim of the EDRN initiative is to develop and sustain a biorepository for support of translational research (Amin et al., 2010) [PMID: 21031013]. High-quality biospecimens were accrued and annotated with pertinent clinical, epidemiologic, molecular and genomic information. A user-friendly annotation tool and query tool was developed for this purpose. The various components of this annotation tool include: CDEs are developed from the College of American Pathologists (CAP) Cancer Checklists and North American Association of Central Cancer Registries (NAACR) standards. The CDEs provides semantic and syntactic interoperability of the data sets by describing them in the form of metadata or data descriptor. A total of 352 colorectal case samples and 399 controls were selected for this study. Controls were matched to CRC cases based on age and sex. The EPICOLON Consortium (EPICOLON): The EPICOLON Consortium comprises a prospective, multicentre and population-based epidemiology survey of the incidence and features of CRC in the Spanish population (Fernandez-Rozadilla et al., 2013) [PMID: 23350875]. Cases were selected as patients with de novo histologically confirmed diagnosis of colorectal adenocarcinoma. Patients with familial adenomatous polyposis, Lynch syndrome or inflammatory bowel disease-related CRC, and cases where patients or family refused to participate in the study were excluded. Hospital-based controls were recruited through the blood collection unit of each hospital, together with cases. All of the controls were confirmed to have no history of cancer or other neoplasm and no reported family history of CRC. Controls were randomly selected and matched with cases for hospital, sex and age (+- 5 years). A total of 370 cases and 370 controls were selected for genotyping. Hawaii Adenoma Study: For this adenoma study, two flexible-sigmoidoscopy screening clinics were first used to recruit participants on Oahu, Hawaii. Adenoma cases were identified either from the baseline examination at the Hawaii site of the Prostate Lung Colorectal and Ovarian cancer screening trial during 1996-2000 or at the Kaiser Permanente Hawaii's Gastroenterology Screening Clinic during 1995-2007. In addition, starting in 2002 and up to 2007, we also approached for recruitment all eligible patients who underwent a colonoscopy in the Kaiser Permanente Hawaii Gastroenterology Department. Cases were patients with histologically confirmed first-time adenoma(s) of the colorectum and were of Japanese, Caucasian or Hawaiian race/ethnicity. Controls were selected among patients with a normal colorectum and were individually matched to the cases on age at exam, sex, race/ethnicity, screening date (+-3 months) and clinic and type of examination (colonoscopy or flexible sigmoidoscopy). We recruited 1016 adenoma cases (67.8% of all eligible) and 1355 controls (69.2% of all eligible); 889 cases and 1169 controls agreed to give a blood and 29 cases and 34 controls, a mouthwash sample. A total of 989 cases and 1185 controls were genotyped for this study. Columbus-area HNPCC Study (HNPCC, OSUMC): Patients with colorectal adenocarcinoma diagnosed at six participating hospitals were eligible for this study, regardless of age at diagnosis or family history of cancer. Patients with a clinical diagnosis of familial adenomatous polyposis were not eligible for this study. These six hospitals perform the vast majority of all operations for CRC in the Columbus metropolitan area (population 1.7 million). The institutional review board at all participating hospitals approved the research protocol and consent form in accordance with assurances filed with and approved by the United States Department of Health and Human Services. Briefly, during the period of January 1999 through August 2004, 1,566 eligible patients with CRC were accrued to the study (Hampel et al., 2008) [PMID 18809606]. A total of 1472 colorectal cancer samples had enough blood DNA remaining to be sent for genotyping. Control samples were provided by the Ohio State University Medical Center%#39;s (OSUMC) Human Genetics Sample Bank. The Columbus Area Controls Sample Bank is a collection of control samples for use in human genetics research that includes both donors' anonymized biological specimens and linked phenotypic data. The data and samples are collected under the protocol "Collection and Storage of Controls for Genetics Research Studies", which is approved by the Biomedical Sciences Institutional Review Board at OSUMC. Recruitment takes place in OSUMC primary care and internal medicine clinics. If individuals agree to participate, they provide written informed consent, complete a questionnaire that includes demographic, medical and family history information, and donate a blood sample. 4-7 ml of blood is drawn into each of 3 ACD Solution A tubes and is used for genomic DNA extraction and the establishment of an EBV-transformed lymphoblastoid cell culture, cell pellet in Trizol, and plasma. Controls were matched to CRC cases as 1:1. Matching was done on age at reference time (age_ref), race, and sex. Age_ref was matched on +-5 years. Sex and race were matched exactly. For the cases without matched controls, matching was done only on sex and race with 1:1 ratio. Since controls are fewer than cases, one control is matched on 2 cases at most. Health Professionals Follow-up Study (HPFS): A parallel prospective study to the NHS (Nurses' Health Study). The HPFS cohort comprised 51,529 men aged 40-75 who, in 1986, responded to a mailed questionnaire (Rimm et al., 1990) [PMID: 2090285]. Participants provided information on health related exposures, including current and past smoking history, age, weight, height, diet, physical activity, aspirin use, and family history of colorectal cancer. Colorectal cancer and other outcomes were reported by participants or next-of-kin and were followed up through review of the medical and pathology record by physicians. Overall, more than 97% of self-reported colorectal cancers were confirmed by medical record review. Information was abstracted on histology and primary location. Incident cases were defined as those occurring after the subject provided the blood sample. Prevalent cases were defined as those occurring after enrollment in the study but before the subject provided the blood sample. Follow-up evaluation has been excellent, with 94% of the men responding to date. Colorectal cancer cases were ascertained through January 1, 2008. In 1993-1995, 18,825 men in the HPFS mailed blood samples by overnight courier, which were aliquoted into buffy coat and stored in liquid nitrogen. In 2001-2004, 13,956 men in the HPFS who had not provided a blood sample previously mailed in a swish-and-spit sample of buccal cells. Incident cases were defined as those occurring after the subject provided a blood or buccal sample. Prevalent cases were defined as those occurring after enrollment in the study in 1986, but before the subject provided either a blood or buccal sample. After excluding participants with histories of cancer (except nonmelanoma skin cancer), ulcerative colitis, or familial polyposis, case-control sets were previously constructed. In addition to colorectal cancer cases and controls, a set of adenoma cases and matched controls with available DNA from buffy coat were selected for genotyping. Over the follow-up period, data were collected on endoscopic screening practices and, if individuals had been diagnosed with a polyp, the polyps were confirmed to be adenomatous by medical record review. Adenoma cases were ascertained through January 1, 2008. A separate case-control set was constructed of participants diagnosed with advanced adenoma matched to control participants who underwent a lower endoscopy in the same time period and did not have an adenoma. Advanced adenoma was defined as an adenoma 1 cm or larger in diameter and/or with tubulovillous, villous, or highgrade dysplasia/carcinoma-in-situ histology. Matching criteria included year of birth (within 1 year) and month/ year of blood sampling (within 6 months), the reason for their lower endoscopy (screening, family history, or symptoms), and the time period of any prior endoscopy (within 2 years). Controls matched to cases with a distal adenoma either had a negative sigmoidoscopy or colonoscopy examination, and controls matched to cases with proximal adenoma all had a negative colonoscopy. In total, 159 advanced adenoma cases and 109 controls were selected for genotyping. Leeds Colorectal Cancer Study (LCCS): Following local ethical approval, colorectal cancer cases were recruited from 1997 until 2012 in Leeds, UK through surgical clinics. Initially, funding was provided by the UK Ministry of Agriculture, Farming and Fisheries (subsequently the Food Standards Agency) and Imperial Cancer Research Fund (subsequently Cancer Research UK). Recruitment also occurred similarly in Dundee, Perth and York between the periods of 1997 and 2001 using the same protocol and the data and samples were combined. Pathologically confirmed cases were consented at outpatient clinics, providing information on known and postulated risk factors for colorectal cancer (diet, lifestyle and family history) as well as providing a blood sample for DNA. Exclusion criteria included pre-existing diverticular disease and an inability to complete the questionnaire. The General Practitioners of cases (all UK residents have a nominated General Practitioner to whom to refer initial medical queries) and these GPs were asked to send letters to other persons on their patient list of the same gender and born within 5 years of the case. Subsequently to enhance the number of controls, we systematically invited patients from selected GP practices. Diet was assessed in cases and controls using an extensive dietary and lifestyle questionnaire modified by that produced by the European Prospective Investigation in Cancer (EPIC). The frequency that each specific food items were eaten was recorded and we also obtained average fruit and vegetable consumption as a cross-check. In total, 1591 cases and 739 controls provided a DNA sample. The North Carolina Colon Cancer Studies (NCCCS I/II): The North Carolina Colon Cancer Studies (NCCCS I- colon and NCCCS II-rectal) were population-based case-control studies conducted in 33 counties of North Carolina. Cases were identified using the rapid case ascertainment system of the North Carolina Central Cancer Registry. Patients with a first diagnosis of histologically confirmed invasive adenocarcinoma of the colon (cecum through sigmoid colon) between October 1996 and September 2000 were classified as potential cases in the NCCCS I. The NCCCS II included patients with a first diagnosis of histologically confirmed invasive adenocarcinoma of the sigmoid colon, rectosigmoid, or rectum (hereafter collectively referred to as rectal cancer) between May 2001 and September 2006. Additional eligibility requirements were: aged 40-80 years, residence in one of the 33 counties, ability to give informed consent and complete an interview, had a driver's license or identification card issued by the North Carolina Department of Motor Vehicles (if under the age of 65), and had no objections from the primary physician in regards to contacting the individual. Controls, identified and sampled during the respective study dates, were selected from two sources. Potential controls under the age of 65 were identified using the North Carolina Department of Motor Vehicles records. For those 65 years and older, records from the Center for Medicare and Medicaid Services were used. Controls were matched to cases using randomized recruitment strategies. Recruitment probabilities were done using strata of 5-year age, sex, and race groups. Dietary information was collected using a modified version of the semiquantitative food frequency questionnaire developed at the National Cancer Institute. In addition, participants were asked about vitamin and mineral supplementation, special diets, restaurant eating, sodium use, and fats used in cooking. In NCCCS I, 515 colorectal cases and 687 matched controls were sent for genotyping. In NCCCS II, 796 colorectal cases and 823 controls were sent from the NCCCS II for genotyping. Controls were matched to CRC cases as 1:1 ratio. Matching was done on age, race, and sex. Age was matched on +-5 years. Race and sex was matched exactly. For the cases without matched controls, matching was done only on sex and race. Nurses Health Study (NHS): The NHS cohort began in 1976 when 121,700 married female registered nurses age 30-55 years returned the initial questionnaire that ascertained a variety of important health-related exposures (Belanger et al., 1978) [PMID: 248266]. Since 1976, follow-up questionnaires have been mailed every 2 years. Colorectal cancer and other outcomes were reported by participants or next-of-kin and followed up through review of the medical and pathology record by physicians. Overall, more than 97% of self-reported colorectal cancers were confirmed by medical-record review. Information was abstracted on histology and primary location. The rate of follow-up evaluation has been high: as a proportion of the total possible follow-up time, follow-up evaluation has been more than 92%. Colorectal cancer cases were ascertained through June 1, 2008. In 1989 -1990, 32,826 women in NHS I mailed blood samples by overnight courier, which were aliquoted into buffy coat and stored in liquid nitrogen. In 2001-2004, 29,684 women in NHS I who did not previously provide a blood sample mailed a swish-and-spit sample of buccal cells. Incident cases were defined as those occurring after the subject provided a blood or buccal sample. Prevalent cases were defined as those occurring after enrollment in the study in 1976 but before the subject provided either a blood or buccal sample. After excluding participants with histories of cancer (except nonmelanoma skin cancer), ulcerative colitis, or familial polyposis, case-control sets were previously constructed from which DNA was isolated from either buffy coat or buccal cells for genotyping. In addition to colorectal cancer cases and controls, a set of advanced adenoma cases and matched controls with available DNA from buffy coat were selected for genotyping. Over the follow-up period, data were collected on endoscopic screening practices and, if individuals had been diagnosed with a polyp, the polyps were confirmed to be adenomatous by medical record review. Adenoma cases were ascertained through June 1, 2011. A separate case-control set was constructed of participants diagnosed with advanced adenoma matched to control participants who underwent a lower endoscopy in the same time period and did not have an adenoma. Advanced adenoma was defined as an adenoma more than 1 cm in diameter and/or with tubulovillous, villous, or high-grade dysplasia/carcinoma-in-situ histology. Matching criteria included year of birth (within 1 year) and month/year of blood sampling (within 6 months), the reason for their lower endoscopy (screening, family history, or symptoms), and the time period of any prior endoscopy (within 2 years). Controls matched to cases with a distal adenoma either had a negative sigmoidoscopy or colonoscopy examination, and controls matched to cases with proximal adenoma all had a negative colonoscopy. A total of 272 cases and 236 matched controls were sent to CIDR for the advanced adenoma case-control set. Northern Swedish Health and Disease Study (NSHDS): Comprises over 110,000 participants, including approximately one third with repeated sampling occasions, from three population-based cohorts (Dahlin et al., 2010; Myte et al., 2016) [PMID: 20197478; PMID: 27367522]. The largest is the ongoing Vasterbotten Intervention Programme, in which all residents of Vasterbotten County are invited to a health examination upon turning 30 (some years), 40, 50 and 60 years of age. Extensive measured and self-reported health and lifestyle data, as well as blood samples for central biobanking in Umea, Sweden, are collected at the health exam. Leucocyte DNA samples for 1:1-matched CRC case-control sets from the NSHDS, of which 878 samples are included in this study, have been selected for genotyping. This is in addition to 354 samples from the NSHDS previously analyzed as part of the multicenter EPIC cohort. Cancer-specific and overall survival data are available for all patients. For at least 425 patients, archival tumor tissue has been analyzed for the BRAF V600E mutation and by sequencing codon 12 and 13 for KRAS mutations, as well as for MSI screening status by immunohistochemistry and for an eight-gene CIMP panel using quantitative real-time PCR (MethyLight). Ohio Colorectal Cancer Prevention Initiative (OCCPI, OSUMC): OCCPI (ClinicalTrials.gov identifier: NCT01850654) is a population-based study of colorectal cancer patients diagnosed in one of 51 hospitals throughout the state of Ohio from January 1, 2013 through December 31, 2016. The OCCPI was created to decrease CRC incidence in Ohio by identifying patients with hereditary predisposition (statewide universal tumor screening for newly diagnosed CRC patients), increase colonoscopy compliance for first-degree relatives of CRC patients, and encourage future research through the creation of a biorepository. The 51 Ohio hospitals participating in the OCCPI were selected to represent a cross-section of clinical centers in the state based on high reported volume of CRC patients, affiliation with a high volume hospital, or interest in participation. Institutional Review Board (IRB) approval was obtained by the individual hospitals, Community Oncology Programs, or by ceding review to the OSU IRB. Written informed consent was obtained. A total of 2139 colorectal cases were genotyped. Patients were considered eligible for this study if they were age 18 or older at the time of enrollment, if they had a surgical resection (or biopsy if unresectable) in the state of Ohio demonstrating an adenocarcinoma of the colorectum from 1/1/13 - 12/31/16. Matched control samples were selected from the Ohio State University Medical Center's (OSUMC) Human Genetics Sample Bank in an identical way to the selection for the Columbus-area HNPCC Study (please refer to the description for the Columbus-area HNPCC Study). Prostate, Lung, Colorectal and Ovarian Cancer Screening Trail (PLCO): PLCO enrolled 154,934 participants (men and women, aged between 55 and 74 years) at ten centers into a large, randomized, two-arm trial to determine the effectiveness of screening to reduce cancer mortality. Sequential blood samples were collected from participants assigned to the screening arm. Participation was 93% at the baseline blood draw. In the observational (control) arm, buccal cells were collected via mail using the "swish-and-spit" protocol and participation rate was 65%. Details of this study have been previously described (Huang et al., 2016) [PMID: 27673363] and are available online (http://dcp.cancer.gov/plco). For this study 1651 advanced adenoma cases and 1392 controls were selected for genotyping. Selenium and Vitamin E Prevention Trial (SELECT): The Selenium and Vitamin E Cancer Prevention Trial (SELECT) was a double-blind, placebo controlled clinical trial which explored using selenium and vitamin E alone and in combination to prevent prostate cancer in healthy men (Lippman et al., 2009) [PMID: 19066370]. Secondary endpoints included the prevention of colorectal and lung cancers. SELECT was conducted at 427 sites and centers in the United States, Canada and Puerto Rico; 35,533 men 55 years and older (50 or older if African American) were randomized beginning August 22, 2001. Supplementation was discontinued on October 23, 2008 due to futility. 308 colorectal cancer cases and 308 matched controls were selected from the SELECT population and sent for genotyping. Screening Markers For Colorectal Disease Study and Colonoscopy and Health Study (SMS-REACH): Details on this study population were previously reported (Burnett-Hartman et al., 2014) [PMID: 24875374]. Participants were enrollees in an integrated health-care delivery system in western Washington State (Group Health Cooperative, Seattle, Washington) aged 24-79 years who underwent an index colonoscopy for any indication between 1998 and 2007 and donated a buccal-cell or blood sample for genotyping analysis. Study recruitment took place in 2 phases, with phase 1 occurring in 1998-2003 and phase 2 occurring in 2004-2007. Persons who had undergone a colonoscopy less than 1 year prior to the index colonoscopy, persons with inadequate bowel preparation for the index colonoscopy, and persons with a prior or new diagnosis of colorectal cancer, a familial colorectal cancer syndrome (such as familial adenomatous polyposis), or another colorectal disease were ineligible. Patients diagnosed with adenomas or serrated polyps and persons who were polyp-free at the index colonoscopy (controls) were systematically recruited during both phases of recruitment. Approximately 75% agreed to participate and provided written informed consent. Based on medical records, persons who agreed to participate and those who refused study participation were similar with respect to age, sex, and colorectal polyp status. Study protocols were approved by the institutional review boards of the Group Health Cooperative and the Fred Hutchinson Cancer Research Center (Seattle, Washington). A total of 575 cases and 508 matched were selected for the study. Controls were matched to CRC cases as 1:1 ratio. Matching was done on age_ref, race, and sex. Age_ref was matched on +-5 years. The Women's Health Initiative (WHI): WHI is a long-term national health study that has focused on strategies for preventing heart disease, breast and colorectal cancer, and osteoporotic fractures in postmenopausal women. The original WHI study included 161,808 postmenopausal women enrolled between 1993 and 1998. The Fred Hutchinson Cancer Research Center in Seattle, WA serves as the WHI Clinical Coordinating Center for data collection, management, and analysis of the WHI. The WHI has two major parts: a partial factorial randomized Clinical Trial (CT) and an Observational Study (OS); both were conducted at 40 Clinical Centers nationwide. The CT enrolled 68,132 postmenopausal women between the ages of 50-79 into trials testing three prevention strategies. If eligible, women could choose to enroll in one, two, or all three of the trial components. The components are: Hormone Therapy Trials (HT): This double-blind component examined the effects of combined hormones or estrogen alone on the prevention of coronary heart disease and osteoporotic fractures, and associated risk for breast cancer. Women participating in this component with an intact uterus were randomized to estrogen plus progestin (conjugated equine estrogens [CEE], 0.625 mg/d plus medroxyprogesterone acetate [MPA] 2.5 mg/d] or a matching placebo. Women with prior hysterectomy were randomized to CEE or placebo. Both trials were stopped early, in July 2002 and March 2004, respectively, based on adverse effects. All HT participants continued to be followed without intervention until close-out. Dietary Modification Trial (DM): The Dietary Modification component evaluated the effect of a low-fat and high fruit, vegetable and grain diet on the prevention of breast and colorectal cancers and coronary heart disease. Study participants were randomized to either their usual eating pattern or a low-fat dietary pattern. Calcium/Vitamin D Trial (CaD): This double-blind component began 1 to 2 years after a woman joined one or both of the other clinical trial components. It evaluated the effect of calcium and vitamin D supplementation on the prevention of osteoporotic fractures and colorectal cancer. Women in this component were randomized to calcium (1000 mg/d) and vitamin D (400 IU/d) supplements or a matching placebo. The Observational Study (OS)examines the relationship between lifestyle, environmental, medical and molecular risk factors and specific measures of health or disease outcomes. This component involves tracking the medical history and health habits of 93,676 women not participating in the CT. Recruitment for the observational study was completed in 1998 and participants were followed annually for 8 to 12 years. All centrally confirmed cases of invasive colorectal cancers, or deaths from colorectal cancer were selected as potential cases from September 30, 2015 database. Controls were participants free of colorectal cancer (invasive or in situ) as of September 30, 2015. Potential cases and controls were excluded if they (1) were non-White; (2) had history of colorectal cancers at baseline; (3) lost to follow-up after enrollment; (4) DbGAP ineligible; (5) had <1.25ug of DNA; (6) selected for WHI study M26 Phase I or II; (7) selected for WHI study AS224 and also included in the imputation project. A total of 578 cases and 104,429 controls met the eligibility criteria. Each case was matched with 1 control (1:1) that exactly met the following matching criteria: age (+-5 years), 40 randomization centers (exact), WHI date (+-3 years), CaD date (+-3 years), OS flag (exact), HRT assignments (exact), DM assignments (exact), and CaD assignments (exact). Control selection was done in a time-forward manner, selecting one control for each case from the risk set at the time of the case's event. The matching algorithm was allowed to select the closest match based on a criteria to minimize an overall distance measure (Bergstralh EJ, Kosanke JL. Computerized matching of cases to controls. Technical Report #56, Department of Health Sciences Research, Mayo Clinic, Rochester MN. April 1995). Each matching factor was given the same weight. When exact matches could not be found, the matching criteria were gradually relaxed among unmatched cases and controls until all cases had found matched controls. Using the matching criteria specified above, 559 of the 578 eligible cases found exact matches. The matching criteria was then relaxed to : Age+-5, randomization centers, WHI date +- 3 years, CaD date +- 3 years, OS flag, HRT flag, DM flag, CaD flag. 17 of the remaining 19 unmatched cases found matched controls. By matching on Age+-5, randomization centers, WHI date +- 3 years, CaD date +- 3 years, OS flag, HRT flag, the remaining 2 unmatched cases found their matches.