The Mutographs project aims to advance our understanding of the causes of cancer through studies of mutational signatures. Led by Mike Stratton, together with Paul Brennan, Ludmil Alexandrov, Allan Balmain, David Phillips and Peter Campbell, this large-scale international research endeavour was awarded a Cancer Research UK Grand Challenge. Different patterns of somatic mutation are generated by the different environmental, lifestyle and genetic factors that cause cancer, many of them are still unknown. Within Mutographs, the International Agency for Research on Cancer is coordinating the recruitment of 5000 individuals with cancer (colorectal, renal, pancreatic, oesophageal adenocarcinoma or oesophageal squamous cancers) across 5 continents to explore whether different mutational signatures explain marked variation in incidence. In brief, through an international network of collaborators around the world, biological materials are collected, along with demographic, histological, clinical and questionnaire data. Whole genome sequences of tumour-germline DNA pairs are generated at the Wellcome Trust Sanger Institute. Somatic mutational signatures are subsequently extracted by non-negative matrix factorisation methods and correlated with risk factors data. Through an enhanced understanding of cancer aetiology, Mutographs unprecedented effort is anticipated to outline modifiable risk factors, lead to new approaches to prevent cancer, and provide opportunities to empower early detection, refine high-risk groups and contribute to further therapeutic development.
The ELLIPSE Consortium is an international effort to discover risk loci for prostate cancer. It includes the meta-analysis of existing GWAS data as well as novel GWAS, exome, and iCOGS genotyping. The GWAS meta-analysis includes the following cases and controls from studies of European ancestry: UK GWAS stage 1 (Illumina Infinium HumanHap 550 Array: 1854 cases and 1894 controls), UK GWAS stage 2 (Illumina iSELECT: 3706 cases and 3884 controls), CAPS1 (Affymetrix GeneChip 500K: 474 cases and 482 controls), CAPS2 (Affymetrix GeneChip 5.0K: 1458 cases and 512 controls), BPC3 (Illumina Human610 Illumina: 2068 cases and 3011 controls), PEGASUS (HumanOmni2.5: 4600 cases and 2941 controls). The OMNI 2.5M genotyping was conducted for 977 prostate cancer cases from UKGPCS. The Exome SNP array genotyping was conducted for 4741 subjects from UKGPCS. The iCOGs genotyping was conducted for 10366 subjects which includes the Multiethnic Cohort (n=1648) and UKGPCS (n=8718). Below is a description of each study that contributed to the meta-analysis of men of European ancestry. Information about the studies that contributed to the multiethnic meta-analysis can be found on the associated study page and also in Conti et al (Nature Genetics, PMID:33398198). UK GWAS Stage 1 (UK1) and Stage 2 (UK2): The UK Genetic Prostate Cancer Study (UKGPCS) was first established in 1993 and is the largest prostate cancer study of its kind in the UK, involving nearly 189 hospitals. We are based at The Institute of Cancer Research in Sutton, Surrey, and collaborate with the Royal Marsden NHS Foundation Trust. Our aim is to find genetic changes which are associated with prostate cancer risk. Our target is to recruit 26,000 gentlemen into the UKGPCS by 2017. Men are eligible to take part if they fit into at least one of the following groups: They have been diagnosed with prostate cancer at 60 years of age or under (up to their 61st birthday). They have been diagnosed with prostate cancer and a first, second or third degree relative where at least one of these men were diagnosed with prostate cancer at 65 years of age or under. They are affected and have 3 or more cases of prostate cancer on one side of their family. They are a prostate cancer patient at the Royal Marsden NHS Foundation Trust. We have to date recruited around 16,000 men on whom we have germline DNA and clinical data at diagnosis. The UK GWAS is based on genotyping of 541,129 SNPs in 1,854 individuals with clinically detected (non-PSA-screened) prostate cancer (cases) and 1,894 controls. 43,671 SNPs showing strong evidence of association in stage 1 were followed up by genotyping a further 3,268 cases and 3,366 controls from UK and Melbourne in stage2. CAPS1 and CAPS2: The CAPS (Cancer of the Prostate in Sweden) study represents a large Swedish population-based cancer study, comprising 3,161 cases and 2,149 controls, recruited between 2001 and 2003. Biopsy confirmed prostate cancer cases were identified and recruited from four out of six regional cancer registries in Sweden, diagnosed between July 2001 and October 2003. Clinical data including TNM stage, Gleason grade and PSA levels at time for diagnosis were retrieved through record linkage to the National Prostate Cancer Registry. Control subjects, who were recruited concurrently with case subjects, were randomly selected from the Swedish Population Registry and matched according to the expected age distribution of cases (groups of 5-year intervals) and geographic region. Whole blood was collected from all individuals for extraction of genomic DNA. A GWAS was conducted in two parts. In the first phase (CAPS1) 498 cases and 502 controls were genotyped, in the second phase 1,483 cases and 519 controls were genotyped. Genotyping was performed using the GeneChip Human Mapping 500K (CAPS1) and 5.0K (CAPS2) Array Set from Affymetrix (Santa Clara, CA). The National Cancer Institute Breast and Prostate Cancer Cohort Consortium, BPC3: BPC3 was a consortium of prospective cohort studies investigating genetic and gene-environmental risk factors for breast and prostate cancer. Each study selected cases and controls for this study as described below. The clinical criteria defining advanced prostate cancer (Gleason = 8 or stage C/D) were either obtained from medical records or cancer registries. The Gleason score source was either surgical specimens (radical prostatectomy or autopsy) or the diagnostic biopsy (needle biopsy or TURP). When multiple Gleason scores were available the surgical value was used. PLCO was removed from the analysis as the samples were included in the Pegasus GWAS described below. In total 2,473 advanced prostate cancer cases and 3,534 controls were included in the analysis following QC. ATBC, Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study: ATBC was a randomized, placebo-controlled primary prevention trial to investigate whether α-tocopherol or ß-carotene supplementation reduced the incidence of lung or other cancers in male smokers. Between 1985 and 1988, 29,133 men ages 50 to 69 years were enrolled in the trial from Finland and randomized to supplementation (50 mg α-tocopherol, 20mg ß-carotene, or both) or placebo. Men with a prior history of cancer, other than non-melanoma skin cancer or carcinoma in situ, were excluded from participating. Incident cancer cases are identified through linkage with the Finnish Cancer Registry, which has ~100% ascertainment of cancer cases nationwide. Cases included 249 men diagnosed with advanced prostate cancer (Gleason = 8 or stage C/D) from 1985 to 2003 with DNA available. Controls were 1,271 men selected previously for a GWAS of lung cancer in ATBC without a diagnosis of prostate cancer. CPSII, Cancer Prevention Study II: CPSII is a cohort study started in 1982 to investigate the relationship between dietary, lifestyle and other etiologic factors and cancer mortality. Approximately 1.2 million men and women enrolled in the study from 50 states in the U.S. In 1992, a subset of these participants (n= ~184,000) were enrolled in the CPSII Nutrition Cohort to examine the relationship between dietary and other exposures and cancer incidence. Blood samples were drawn from approximately 39,376 members of the Nutritional Cohort from 1998 to 2001, and buccal cells were collected from 69,467 members from 2001 to 2002. Cancer cases are identified by self-report through follow-up questionnaires followed by verification through medical records and/or linkage to state cancer registries as well as death certificates. A total of 660 advanced prostate cancer cases (Gleason = 8 or stage III/IV) with a source of DNA were identified for this study. Controls were 660 men matched on ethnicity, date of birth, sample collection date and DNA type. EPIC, European Prospective Investigation into Cancer and Nutrition: EPIC is a prospective study designed to investigate both genetic and non-genetic risk factors for different forms of cancer. Study participants were almost all white Europeans. Approximately 500,000 individuals (150,000 men) in EPIC were recruited between 1992 and 2000, from 23 centers in 10 European countries. Overall approximately 400,000 subjects also provided a blood sample at recruitment. The methods of recruitment and details of the study design are described in detail elsewhere. In brief, study participants completed an extensive questionnaire on both dietary and nondietary data at recruitment. The present study includes subjects from advanced prostate cancer cases (Gleason = 8 or stage III/IV) matched to controls based on study center, length of follow-up, age at enrollment (± 6 months), fasting and time of day of blood collection (± 1 hour). The advanced prostate cancer subjects were from 8 of the 10 participating countries: Denmark, Germany, Greece, Italy, the Netherlands, Spain, Sweden and the United Kingdom (UK). France and Norway were not included in the current study because these cohorts only included female subjects. All participants gave written consent for the research and approval for the study was obtained from the ethical review board from all local institutions in the regions where participants had been recruited for the EPIC study. HPFS, Health Professionals Follow-up Study: HPFS began in 1986 and is an ongoing prospective cohort study of 51,529 United States male dentists, optometrists, osteopaths, podiatrists, pharmacists, and veterinarians 40 to 75 years of age. The baseline questionnaire provided information on age, marital status, height and weight, ancestry, medications, smoking history, disease history, physical activity, and diet. At baseline the cohort was 97% white, 2% Asian American, and 1% African American. The median follow-up through 2005 was 10.5 years (range 2-19 years). Self-reported prostate cancer diagnoses were confirmed by obtaining medical and/or pathology records. Prostate cancer deaths are either reported by family members in response to follow-up questionnaires, discovered by the postal system, or the National Death Index. Questionnaires are sent every two years to surviving men to update exposure and medical history. In 1993 and 1994, a blood specimen was collected from 18,018 men without a prior diagnosis of cancer. Prostate cancer cases are matched to controls on birth year (+/-1) and ethnicity. Controls are selected from those who are cancer-free at the time of the case’s diagnosis, and had a prostate-specific antigen test after the date of blood draw. MEC, Multiethnic Cohort: The Multiethnic Cohort Study is a population-based prospective cohort study that was initiated between 1993 and 1996 and includes subjects from various ethnic groups - African Americans and Latinos primarily from Californian (great Los Angeles area) and Native Hawaiians, Japanese-Americans, and European Americans primarily from Hawaii. State drivers’ license files were the primary sources used to identify study subjects in Hawaii and California. Additionally, in Hawaii, state voter’s registration files were used, and, in California, Health Care Financing Administration (HCFA) files were used to identify additional African American men. All participants (n=215,251) returned a 26-page self-administered baseline questionnaire that obtained general demographic, medical and risk factor information. In the cohort, incident cancer cases are identified annually through cohort linkage to population-based cancer Surveillance, Epidemiology, and End Results (SEER) registries in Hawaii and Los Angeles County as well as to the California State cancer registry. Information on stage and grade of disease are also obtained through the SEER registries. Blood sample collection in the MEC began in 1994 and targeted incident prostate cancer cases and a random sample of study participants to serve as controls for genetic analyses. PHS, Physicians Health Study:PHS was a randomized trial of aspirin and ß carotene for cardiovascular disease and cancer among 22,071 U.S. male physicians ages 40-84 years at randomization; none had a cancer diagnosis at baseline. The original trial ended, but the men are followed. From 1982 to 1984, blood samples were collected from 14,916 physicians before randomization. Participants are sent yearly questionnaires to ascertain endpoints. Whenever a physician reports cancer, we request permission to obtain the medical records, and cancers are confirmed by pathology report. We obtain death certificates and pertinent medical records for all deaths. Follow-up for nonfatal outcomes in PHS is over 97% complete, and for mortality, over 99%. PLCO, Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial:PLCO is a multicenter, randomized trial to evaluate screening methods for the early detection of prostate, lung, colorectal and ovarian cancer. Between 1993 and 2001, over 150,000 men and women ages 55-74 years were recruited from ten centers in the United States (Birmingham, AL; Denver, CO; Detroit, MI; Honolulu, HI; Marshfield, WI; Minneapolis, MN; Pittsburgh, PA; Salt Lake City, UT; St. Louis, MO; and Washington, D.C.). Men randomized to the screening arm underwent prostate cancer screening with prostate-specific antigen (PSA) annually for six years and digital rectal exam annually for four years. Blood specimens were collected from participants randomized to the screening arm of the trial, and buccal cell specimens were obtained from participants randomized to the control arm. Cases included 754 men diagnosed with advanced prostate cancer (Gleason = 8 or stage III/IV) from either arm of the trial. Of these cases, 317 were genotyped previously as part of Cancer Genetic Markers of Susceptibility (CGEMS), a GWAS for prostate cancer. Controls included 1,491 men without a diagnosis of prostate cancer from the screening arm of the PLCO trial. All subjects provided informed consent to participate in genetic etiology studies of cancer and other traits. This study was approved by the institutional review boards at the ten centers and the National Cancer Institute. PLCO was removed from the meta-analysis of the BPC3 studies as a consequence of PEGASUS below. PEGASUS, Prostate cancer Genome-wide Association Study of Uncommon Susceptibility loci: Pegasus is a genome-wide association nested within the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial. PLCO is a multicenter, randomized trial to evaluate screening methods for the early detection of prostate, lung, colorectal and ovarian cancer. Between 1993 and 2001, over 150,000 men and women ages 55-74 years were recruited from ten centers in the United States (Birmingham, AL; Denver, CO; Detroit, MI; Honolulu, HI; Marshfield, WI; Minneapolis, MN; Pittsburgh, PA; Salt Lake City, UT; St. Louis, MO; and Washington, D.C.). Men randomized to the screening arm underwent prostate cancer screening with prostate-specific antigen annually for six years and digital rectal exam annually for four years. Blood specimens were collected from participants randomized to the screening arm of the trial, and buccal cell specimens were obtained from participants randomized to the control arm. Cases included 4,598 men of European ancestry diagnosed with prostate cancer from either arm of the trial and controls included 2,941 men of European ancestry without a diagnosis of cancer from the screening arm, matched on age and year of randomization. All subjects provided informed consent, and the study approved by the institutional review board at the National Cancer Institute. Funding:This work was supported by the GAME-ON U19 initiative for prostate cancer (ELLIPSE): U19 CA148537. The BPC3 was supported by the U.S. National Institutes of Health, National Cancer Institute (cooperative agreements U01-CA98233, U01-CA98710, U01-CA98216, and U01-CA98758, and Intramural Research Program of NIH/National Cancer Institute, Division of Cancer Epidemiology and Genetics). The ATBC study and PEGASUS was supported in part by the Intramural Research Program of the NIH and the National Cancer Institute. Additionally, this research was supported by U.S. Public Health Service contracts N01-CN-45165, N01-RC-45035, N01-RC-37004 and HHSN261201000006C from the National Cancer Institute, Department of Health and Human Services. CAPS: The Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden was supported by the Cancer Risk Prediction Center (CRisP; www.crispcenter.org), a Linneus Centre (Contract ID 70867902) financed by the Swedish Research Council, Swedish Research Council (grant: K2010-70X-20430-04-3), the Swedish Cancer Foundation (grant: 09-0677), the Hedlund Foundation, the Söderberg Foundation, the Enqvist Foundation, ALF funds from the Stockholm County Council. Stiftelsen Johanna Hagstrand och Sigfrid Linnér’s Minne, Karlsson’s Fund for urological and surgical research. We thank and acknowledge all of the participants in the Stockholm-1 study. We thank Carin Cavalli-Björkman and Ami Rönnberg Karlsson for their dedicated work in the collection of data. Michael Broms is acknowledged for his skillful work with the databases. KI Biobank is acknowledged for handling the samples and for DNA extraction. Hans Wallinder at Aleris Medilab and Sven Gustafsson at Karolinska University Laboratory are thanked for their good cooperation in providing historical laboratory results. UKGPCS would like to acknowledge the NCRN nurses and Consultants for their work in the UKGPCS study. We thank all the patients who took part in this study. This work was supported by Cancer Research UK (grants: C5047/A7357, C1287/A10118, C1287/A5260, C5047/A3354, C5047/A10692, C16913/A6135 and C16913/A6835). We would also like to thank the following for funding support: Prostate Research Campaign UK (now Prostate Cancer UK), The Institute of Cancer Research and The Everyman Campaign, The National Cancer Research Network UK, The National Cancer Research Institute (NCRI) UK. We are grateful for support of NIHR funding to the NIHR Biomedical Research Centre at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust. The MEC was supported by NIH grants CA63464, CA54281 and CA098758.
Whole exome sequencing of 10 metastatic biopsies from four TRACERx100 patients (see EGA dataset EGAS00001002247), collected either after relapse or death. The data from these samples are initially published with Abbosh, C. et al. Phylogenetic ctDNA analysis depicts early stage lung cancer evolution. Nature http://dx.doi.org/10.1038/nature22364 (2017). Abstract: Earlier detection of relapse following primary surgery for non-small cell lung cancer and the characterization of emerging subclones seeding metastatic sites might offer new therapeutic approaches to limit tumor recurrence. The potential to non-invasively track tumor evolutionary dynamics in ctDNA of early-stage lung cancer is not established. Here we conduct a patient-specific approach to ctDNA profiling in the first 100 lung TRACERx (TRAcking Cancer Evolution through therapy (Rx)) study participants, including one patient co-recruited to the PEACE (Posthumous Evaluation of Advanced Cancer Environment) post-mortem study. We identify independent predictors of ctDNA release in early-stage non-small cell lung cancer and perform tumor volume limit of detection analyses. Through blinded profiling of post-operative plasma, we observe evidence of adjuvant chemotherapy resistance and identify patients destined to experience recurrence of their lung cancer. Finally, we show that phylogenetic ctDNA profiling tracks the subclonal nature of lung cancer relapse and metastases, providing a new approach for ctDNA driven therapeutic studies.
The Mutographs project aims to advance our understanding of the causes of cancer through studies of mutational signatures. Led by Mike Stratton, together with Paul Brennan, Ludmil Alexandrov, Allan Balmain, David Phillips and Peter Campbell, this large-scale international research endeavour was awarded a Cancer Research UK Grand Challenge. Different patterns of somatic mutation are generated by the different environmental, lifestyle and genetic factors that cause cancer, many of them are still unknown. Within Mutographs, the International Agency for Research on Cancer is coordinating the recruitment of 5000 individuals with cancer (colorectal, renal, pancreatic, oesophageal adenocarcinoma or oesophageal squamous cancers) across 5 continents to explore whether different mutational signatures explain marked variation in incidence. In brief, through an international network of collaborators around the world, biological materials are collected, along with demographic, histological, clinical and questionnaire data. Whole genome sequences of tumour-germline DNA pairs are generated at the Wellcome Trust Sanger Institute. Non-tumour DNA is also studied for some cancer types. Somatic mutational signatures are subsequently extracted by non-negative matrix factorisation methods and correlated with risk factors data. Through an enhanced understanding of cancer aetiology, Mutographs unprecedented effort is anticipated to outline modifiable risk factors, lead to new approaches to prevent cancer, and provide opportunities to empower early detection, refine high-risk groups and contribute to further therapeutic development.
Aberrant chromatin features and epigenetic signaling emerge as an important part of the tumor disease state in chronic lymphocytic leukemia (CLL). However, an integrative analysis of the malignant chromatin landscape is currently missing. Here, we mapped DNA-methylation, nucleosome position, 7 histone modifications, ATAC-seq and the transcriptome in primary CD19+ sorted B-cells from the peripheral blood of CLL patients in comparison to non-malignant lymphocytes of healthy donor reference samples. On the > 50 kb scale we identified global differences with respect to DNA methylation, nucleosome positioning and histone modifications in CLL. Furthermore, a chromatin state annotation was developed to identify deregulated chromatin features of promoters and enhancers in CLL. By integrating these findings with an ATAC-seq based transcription factor binding analysis we identified a set of promoters and enhancers specific to CLL that were enriched in certain transcription factors binding motifs and genes of the BCR signaling pathway. Thus, our study provides an in-depth map of the CLL chromatin landscape and links chromatin state changes at promoters and enhancers to deregulated pathways.
High-dimensional scRNA seq and CyTOF were used to identify features predictive of treatment outcome at diagnosis. An optimal TKI response was characterised by erythroid lineage skewing of the CD34+ HSPC compartment. While TKI-resistant CP was reminiscent of a BC-like state, where HSPCs were enriched for inflammation, stemness and quiescence. We designed a machine-learning approach which assessed the prognostic potential of all 32 sub-populations of our scRNA seq dataset. LSCs and NK populations harboured the highest prognostic power at diagnosis. Within the LSCs, erythroid lineage priming and MYC activation were features of an optimal and poor TKI responses, respectively. With the NK cell compartment, apart from a higher abundance of NK cells in TKI optimal responders, a memory-like HLA-DR+ adaptive NK and KLRC1+ NK populations were hallmarks of an optimal and poor TKI responses, respectively. Mechanistically, both cell intrinsic and extrinsic mechanisms contributed towards the higher sensitivity of EPs to TKI therapy. In summary, our high-dimensional single-cell atlas of TKI resistance highlights pivotal transcriptional features associated with TKI-resistance disease, some of which have the potential to be exploited as biomarkers.
Version 1 Whole genome sequencing was applied to tumor and adjacent normal lung tissue in an individual non-small-cell lung cancer patient. We present an analysis of somatic changes identified throughout the tumor genome, including single-nucleotide variants, copy number variants, and large-scale chromosomal rearrangements. Over 50,000 high-confidence single-nucleotide variants were identified, revealing evidence of substantial smoking-related DNA damage as well as distinct mutational pressures within the tumor resulting in uneven distribution of somatic mutations across the genome. Version 2 Lung cancer is a highly heterogeneous disease in terms of both underlying genetic lesions and response to therapeutic treatments. We performed deep whole genome sequencing and transcriptome sequencing on 19 lung cancer cell lines and 3 lung tumor/normal pairs. Overall, our data show that cell line models exhibit similar mutation spectra to human tumor samples. Smoker and never-smoker cancer samples exhibit distinguishable patterns of mutations. A number of epigenetic regulators are frequently altered by mutations or copy number changes. A systematic survey of splice-site mutations identified over 100 splice site mutations associated with cancer specific aberrant splicing, including mutations in several known cancer-related genes. Differential usages of splice isoforms were also studied. Taken together, these data present a comprehensive genomic landscape of a large number of lung cancer samples and further demonstrate that cancer specific alternative splicing is a widespread phenomenon that has potential utility as therapeutic biomarkers.
We perform whole exome sequencing of 50 pairs of gastric cancer and matched normal samples
The Cancer Model Development Center (CMDC) project is part of the Human Cancer Model Initiative (HCMI) and is managed by the Office of Cancer Genomics within the Center for Cancer Genomics at the National Cancer Institute (NCI). The goal of the HCMI is to generate approximately 1000 novel human "next generation" tumor-derived models as a community resource. The models aim to faithfully recapitulate the cellular complexity and heterogeneity of human tumors. The CMDCs are tasked by the NCI with producing a proportion of the cancer models. Wellcome Sanger Institute (WSI) is a contributing member of the HCMI. Models developed by HCMI are being derived from a number of tumor types and subtypes (see below), including rare adult, pediatric and understudied cancers. The number of models and the clinical sites from which patient samples are acquired is increasing. Normal tissue, originating tumor, and tumor-derived models are sequenced. The next generation cancer models are associated with rich clinical and genomic data through the NCI Genomic Data Commons for all researchers to advance cancer research. The CMDC and HCMI models will serve as excellent tools in research to provide insight into the pathways that influence tumor growth and progression, how tumors respond to therapy, etc. Ultimately, the data generated using these models will support the development of personalized oncology. There is a delay between registered IDs and model availability. The current model count is found in The HCMI Searchable Catalog which is updated when new models are available for distribution to the research community.
Evaluate the biology underlying inter-tumor cistromic heterogeneity of ER-alpha, in relation to genomic locations and germline variations between breast cancer tumors