Study
Use of Deep Sequencing to Dectect Clonal Mutations In Sun Exposed Skin Epidermis
Study ID | Alternative Stable ID | Type |
---|---|---|
EGAS00001000515 | Cancer Genomics |
Study Description
This study aims to define the landscape of somatic mutations in sun exposed human skin by deep sequencing, analyse their frequency and use the data to infer the effect of mutations on proliferating cell behaviour. The frequency of each mutation will reflect the size of the clone of cells in the tissue sample. By analyzing small samples, clones with as few as 100 cells will be detectable. Allele frequency distributions for each mutation will be used to infer cell fate using published methods (Klein et al. 2010). This study will shed unprecedented light on the early clonal events that lead to the emergence of cancer.
Study Datasets 1 dataset.
Click on a Dataset ID in the table below to learn more, and to find out who to contact about access to these data
Dataset ID | Description | Technology | Samples |
---|---|---|---|
EGAD00001001090 |
This study aims to define the landscape of somatic mutations in sun exposed human skin by deep sequencing, analyse their frequency and use the data to infer the effect of mutations on proliferating cell behaviour. The frequency of each mutation will reflect the size of the clone of cells in the tissue sample. By analyzing small samples, clones with as few as 100 cells will be detectable. Allele frequency distributions for each mutation will be used to infer cell fate using published methods ... (Show More)
|
Illumina HiSeq 2000 | 166 |
Who archives the data?

Publications
Citations
Retrieving...

Retrieving...

Retrieving...

Retrieving...
