Study

The evolutionary steps from primary to metastatic prostate cancer are largely uncharted, and the ability to use DNA present in body fluids as correlates of aggregate metastatic status is under-examined. We reconstructed phylogenies in ten prostate cancer patients with fatal disease using deep targeted sequencing of the prostate, adjacent and distant organs, as well as plasma, serum, and cerebrospinal fluid at various time points. A total of 163 samples are studied.

Study ID Alternative Stable ID Type
EGAS00001003848 Other

Study Description

The evolutionary steps from primary tumor to metastasis in prostate cancer are largely uncharted, and the ability to use serum, plasma, and cerebrospinal fluid as a correlate of aggregate metastatic tumor genomic status has not been tested. We used deep targeted sequencing to reconstruct tumor evolution in ten prostate cancer patients with fatal disease encompassing examination of the prostate and adjacent and distant organs, as well as plasma, serum, and cerebrospinal fluid at various time points. We show that there is substantial evolution from a common ancestor within the prostate that results in branching to multiple lineages which form an intermixed multi-clonal primary tumor mass. After the occurrence of key driver aberrations, one of these lineages will metastasize to multiple sites in a sequential fashion. These metastatic sites are then susceptible to being populated by cells from other intra-prostatic lineages or from other metastases. Genomic representation of metastases in body fluids is not uniform. Cerebrospinal fluid analysis can detect lineages not detected in ... (Show More)

Study Datasets 3 datasets.

Click on a Dataset ID in the table below to learn more, and to find out who to contact about access to these data

Dataset ID Description Technology Samples
EGAD00001005381
Woodcock et al TenMenDeep EGA Dataset A. These are Illumina based deep sequencing data based on bait capture sequencing. See Woodcock et al methods for more detail. Note: the Amplicon sequencing data type is selected because the EGA Website currently has no option to select Bait Capture Sequencing or similar.
Illumina HiSeq 2500 117
EGAD00001005382
Woodcock et al TenMenDeep EGA Dataset B. These are Illumina based deep sequencing data based on bait capture sequencing. See Woodcock et al methods for more detail. Note: the Amplicon sequencing data type is selected because the EGA Website currently has no option to select Bait Capture Sequencing or similar.
Illumina HiSeq 2500 33
EGAD00001005974
Oxford Nanopore long-read sequencing of A17-LAxillaryLN2Met-23312 PELICAN sample, identified as D051965 un Pan-Cancer Analysis of Whole Genomes study, and identified as PD13412a by prior Gundem et al whole genome sequencing study (PMID 25830880). Data used to support Figure 6 in Pubmed ID 32025007 "Pan-Cancer Analysis of Whole Genomes Consortium." Nature 2020 578:8293.
PromethION 1

Who archives the data?

There are no publications available