Need Help?

Blood neutrophils in COPD derive from activated progenitors in the bone marrow sc Rhapsody

Chronic obstructive pulmonary disease (COPD) is a major respiratory disease characterized by small airway inflammation, emphysema and severe breathing difficulties. Low-grade systemic inflammation is an established hallmark of severe disease, however, the molecular changes in peripheral immune cells remain far from understood. We combined multi-color flow cytometry with single-cell RNA sequencing and showed that blood neutrophil numbers are significantly increased in COPD and they are a heterogeneous population. A transcriptomic state that expressed interferon response genes correlated with alveolar damage and acute exacerbations. Furthermore, bronchoalveolar neutrophils expressed gene signatures corresponding to certain blood neutrophil states. Last, our data in a murine model of cigarette smoke exposure demonstrated that bone marrow neutrophil progenitors are expanded in smoke-treated animals and display signs of immune activation. Our study provides evidence that COPD systemic inflammation may derive from an activated haematopoietic precursor compartment.

Request Access

Chronic obstructive pulmonary disease (COPD) is a major respiratory disease characterized by small airway inflammation, emphysema and severe breathing difficulties. Low-grade systemic inflammation is an established hallmark of severe disease, however, the molecular changes in peripheral immune cells remain far from understood. We combined multi-color flow cytometry with single-cell RNA sequencing and showed that blood neutrophil numbers are significantly increased in COPD and they are a heterogeneous population. A transcriptomic state that expressed interferon response genes correlated with alveolar damage and acute exacerbations. Furthermore, bronchoalveolar neutrophils expressed gene signatures corresponding to certain blood neutrophil states. Last, our data in a murine model of cigarette smoke exposure demonstrated that bone marrow neutrophil progenitors are expanded in smoke-treated animals and display signs of immune activation. Our study provides evidence that COPD systemic inflammation may derive from an activated haematopoietic precursor compartment.

Access to data generated is made available by completing the data access agreement for review by the data access committee and will be granted exclusively to qualified investigators for appropriate use.

Studies are experimental investigations of a particular phenomenon, e.g., case-control studies on a particular trait or cancer research projects reporting matching cancer normal genomes from patients.

Study ID Study Title Study Type
EGAS00001006323 Other

This table displays only public information pertaining to the files in the dataset. If you wish to access this dataset, please submit a request. If you already have access to these data files, please consult the download documentation.

ID File Type Size Located in
EGAF00007449537 fastq.gz 127.6 GB
EGAF00007449538 fastq.gz 154.2 GB
EGAF00007595209 txt 3.4 kB
3 Files (281.8 GB)