Somatic mutations accumulate in healthy tissues as we age, giving rise to cancer and potentially contributing to ageing. To study somatic mutations in non-neoplastic tissues, we developed a series of protocols to sequence the genomes of small populations of cells isolated from histological sections. Here, we describe a complete workflow that combines laser-capture microdissection (LCM) with low-input genome sequencing, whilst circumventing the use of whole-genome amplification (WGA). The protocol is subdivided broadly into 4 steps: tissue processing, LCM, low-input library generation and mutation calling and filtering. The tissue processing and LCM steps are provided as general guidelines which may require tailoring based on the specific requirements of the study at hand. Our protocol for low-input library generation utilises enzymatic rather than acoustic fragmentation to generate WGA-free whole-genome libraries. Finally, the mutation calling and filtering strategy has been adapted from previously published protocols to account for artefacts introduced via library creation. To date, we have used this workflow to perform targeted and whole-genome sequencing of small populations of cells (typically 100-1,000 cells) in thousands of microbiopsies from a wide range of human tissues. The low-input DNA protocol is designed to be compatible with liquid handling platforms and make use of equipment and expertise standard to any core sequencing facility. However, obtaining low-input DNA material via LCM requires specialized equipment and expertise. The entire protocol from tissue reception through whole-genome library generation can be accomplished in as little as a week, though 2-3 weeks would be a more typical turnaround time.
The dataset is composed by processed whole genome sequencing data generated from 53 children and their respective parents, forming 49 trios (mother, father and child) and 2 quartets (mother, father and two siblings). A total of 18 children were born after spontaneous conception (n = 18); 17 children were born after in vitro fertilization (IVF) and another 18 children were born after intracytoplasmic sperm injection combined with testicular sperm extraction (ICSI-TESE)
Mutations that activate the RAF-MEK-ERK signaling pathway, in particular BRAFV600E, occur in many cancers, and mutant BRAF-selective inhibitors have clinical activity in these diseases. Activating BRAF alleles are usually considered to be mutually exclusive with mutant RAS, whereas inactivating mutations in the D594F595G596 motif of the BRAF activation segment can coexist with oncogenic RAS and cooperate via paradoxical MEK/ERK activation. We determined the functional consequences of a largely uncharacterized BRAF mutation, F595L, which was detected along with an HRASQ61R allele by clinical exome sequencing in a patient with histiocytic sarcoma and also occurs in epithelial cancers, melanoma, and neuroblastoma, and investigated its interaction with mutant RAS. We demonstrate that, unlike previously described DFG motif mutants, BRAFF595L is a gain-of-function variant with intermediate activity towards MEK that does not act paradoxically, but nevertheless cooperates with mutant RAS to promote oncogenic signaling. Of immediate clinical relevance, BRAFF595L shows divergent responses to different mutant BRAF-selective inhibitors, whereas signaling driven by BRAFF595L with and without mutant RAS is efficiently blocked by pan-RAF and MEK inhibitors. Mutation data from primary patient samples and cell lines show that BRAFF595L, as well as other BRAF mutations with intermediate activity, frequently coincide with mutant RAS in a broad spectrum of cancers. These data define a novel class of activating BRAF mutations that cooperate with oncogenic RAS in a non-paradoxical fashion to achieve an optimal level of MEK-ERK signaling, extend the spectrum of patients with systemic histiocytic disorders and other malignancies who are candidates for therapeutic blockade of the RAF-MEK-ERK pathway, and underscore the value of comprehensive genetic profiling for understanding the signaling requirements of individual cancers.
Analysis of the reference epigenomes and regulatory landscape of CLL as a whole and its major clinico-biological subtypes (with mutated and unmutated IGHV) in the light of the normal B-cell differentiation. We have extensively characterized the reference epigenomes of seven primary chronic lymphocytic leukemia samples (CLLs) with mutated (n=5) and unmutated IGHV (n=2) as well as several mature B-cell subpopulations (naive B cells from blood and tonsil, germinal center B cells, memory B cells and plasma cells from tonsil) using genome-wide maps of six histone marks (H3K4me3, H3K4me1, H3K27ac, H3K36me3, H3K9me3 and H3K27me3), DNA accessibility (ATAC-seq), DNA methylation (whole-genome bisulfite sequencing) and gene expression (RNA-seq). Furthermore, we have mapped the regulatory chromatin landscape of 100 additional CLL cases using chIP-seq of H3K27ac and ATAC-seq and linked these data to additional layers of information (whole-genome and/or whole-exome sequencing (WGS/WES), RNA-seq and DNA methylation microarrays) studied in the context of the International Cancer Genome Consortium (ICGC).
The Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO) is a collaborative effort comprised of a coordinating center and scientific researchers from well-characterized cohort and case-control studies conducted in North America and Europe. This international consortium aims to accelerate the discovery of common and rare genetic risk variants for colorectal cancer by conducting large-scale meta-analyses of existing and newly generated genome-wide association study (GWAS) data, replicating and fine-mapping of GWAS discoveries, and investigating how genetic risk variants are modified by environmental risk factors. To expand these efforts, we assembled case-control sets or nested case-control sets from 20 different North American or European studies. Summary descriptions and study participant inclusions/exclusion criteria for each of these studies are detailed below. The Black Women's Health Study (BWHS): Is the largest follow-up study of the health of African-American women (Cozier et al., 2004; Rosenberg et al., 1995) [PMID: 15018884; PMID: 7722208]. The purpose is to identify and evaluate causes and preventives of cancers and other serious illnesses in African-American women. Among the diseases being studied are breast cancer, colorectal cancer, type 2 diabetes, uterine fibroids, systemic lupus erythematosus, and cardiovascular disease. The study began in 1995, when 59,000 black women from all parts of the United States enrolled through postal questionnaires. The women provided demographic and health data on the 1995 baseline questionnaire, including information on weight, height, smoking, drinking, contraceptive use, use of other selected medications, illnesses, reproductive history, physical activity, diet, use of health care, and other factors. The participants are followed through biennial questionnaires to determine the occurrence of cancers and other illnesses and to update information on risk factors. Self-reports of cancer are confirmed through medical records and state cancer registry records. Mouthwash-swish samples, as a source of DNA, were obtained from ~26,000 BWHS participants in 2002-2007. DNA was isolated from the mouthwash-swish samples at the Boston University Molecular Core Genetics Laboratory using the QIAAMP DNA Mini Kit (Qiagen). All incident colorectal cancer cases with a DNA sample were included in the present analysis. Two controls per case, selected from among BWHS participants free of colorectal cancer at end of follow-up, were matched to cases on year of birth (+/- 2 years) and geographical region of residence (Northeast, South, Midwest, and West). A total 209 colorectal cancer cases and 423 controls were sent for genotyping. Campaign Against Cancer and Heart Disease (CLUE II): The Campaign Against Cancer and Heart Disease, is a prospective cohort designed to identify biomarkers and other factors associated with risk of cancer, heart disease, and other conditions (Kakourou et al., 2015) [PMID: 26220152]. 32,894 participants were recruited from May through October 1989 from Washington County, Maryland and surrounding communities. Colorectal cancer cases (n = 297) and matched controls (n = 296) were identified between 1989 and 2000 among participants in the CLUE II cohort of Washington County, Maryland. Colorectal Cancer Study of Austria (CORSA): In the ongoing colorectal cancer study of Austria (CORSA), more than 13,000 Caucasian participants have been recruited within the province-wide screening project "Burgenland Prevention Trial of Colorectal Disease with Immunological Testing" (B-PREDICT) since 2003 (Hofer et al., 2011) [PMID: 21422235]. All inhabitants of the Austrian province Burgenland aged between 40 and 80 years are annually invited to participate in fecal immunochemical testing and haemoccult positive screening participants are invited for colonoscopy. CORSA includes genomic DNA and plasma of colorectal cancer cases, low-risk and high-risk adenomas, and colonoscopy-negative controls. Controls received a complete colonoscopy and were free of colorectal cancer or polyps. CORSA participants have been recruited in the four KRAGES hospitals in Burgenland, Austria, and additionally, at the Medical University of Vienna (Department of Surgery), the Viennese hospitals "Rudolfstiftung" and the "Sozialmedizinisches Zentrum Sud", and at the Medical University of Graz (Department of Internal Medicine). 1403 colorectal cancer and advanced colorectal adenoma cases, and 1404 matched controls were selected for the study. Distribution of factors sex and age (5 year strata) were evenly matched between cases and controls. Cancer Prevention Study II (CPS II): The CPS II Nutrition cohort is a prospective study of cancer incidence and mortality in the United States, established in 1992 and described in detail elsewhere (Calle et al., 2002; Campbell et al., 2014) [PMID: 12015775; PMID: 25472679]. At enrollment, participants completed a mailed self-administered questionnaire including information on demographic, medical, diet, and lifestyle factors. Follow-up questionnaires to update exposure information and to ascertain newly diagnosed cancers were sent biennially starting in 1997. Reported cancers were verified through medical records, state cancer registry linkage, or death certificates. The Emory University Institutional Review Board approves all aspects of the CPS II Nutrition Cohort. A total of 360 cases and 359 controls were selected for this study. Czech Republic Colorectal Cancer Study (Czech Republic CCS): Cases with positive colonoscopy results for malignancy, confirmed by histology as colon or rectal carcinomas, were recruited between September 2003 and May 2012 in several oncological departments in the Czech Republic (Prague, Pilsen, Benesov, Brno, Liberec, Ples, Pribram, Usti and Labem, and Zlin). Two control groups, sampled at the same time of cases recruitment, were included in the study. The first group consisted of hospital-based individuals with a negative colonoscopy result for malignancy or idiopathic bowel diseases. The reasons for the colonoscopy were: i) positive fecal occult blood test, ii) hemorrhoids, iii) abdominal pain of unknown origin, and iv) macroscopic bleeding. The second control group consisted of healthy blood donor volunteers from a blood donor center in Prague. All individuals were subjected to standard examinations to verify the health status for blood donation and were cancer-free at the time of the sampling. Details of CRC cases and controls have been reported previously (Vymetalkova et al., 2014; Naccarati et al., 2016; Vymetalkova et al., 2016) [PMID: 24755277; PMID: 26735576; PMID: 27803053]. All subjects were informed and provided written consent to participate in the study. They approved the use of their biological samples for genetic analyses, according to the Declaration of Helsinki. The design of the study was approved by the Ethics Committee of the Institute of Experimental Medicine, Prague, Czech Republic. All subjects included in the study were Caucasians and comprised 1792 cases and 1764 matched controls. Controls were matched to CRC cases as 1:1 ratio. Matching was done on age and sex. Age was matched on +-5 years, whereas sex was matched exactly. For the cases without matched controls, matching was done only on sex. Early Detection Research Network (EDRN): The aim of the EDRN initiative is to develop and sustain a biorepository for support of translational research (Amin et al., 2010) [PMID: 21031013]. High-quality biospecimens were accrued and annotated with pertinent clinical, epidemiologic, molecular and genomic information. A user-friendly annotation tool and query tool was developed for this purpose. The various components of this annotation tool include: CDEs are developed from the College of American Pathologists (CAP) Cancer Checklists and North American Association of Central Cancer Registries (NAACR) standards. The CDEs provides semantic and syntactic interoperability of the data sets by describing them in the form of metadata or data descriptor. A total of 352 colorectal case samples and 399 controls were selected for this study. Controls were matched to CRC cases based on age and sex. The EPICOLON Consortium (EPICOLON): The EPICOLON Consortium comprises a prospective, multicentre and population-based epidemiology survey of the incidence and features of CRC in the Spanish population (Fernandez-Rozadilla et al., 2013) [PMID: 23350875]. Cases were selected as patients with de novo histologically confirmed diagnosis of colorectal adenocarcinoma. Patients with familial adenomatous polyposis, Lynch syndrome or inflammatory bowel disease-related CRC, and cases where patients or family refused to participate in the study were excluded. Hospital-based controls were recruited through the blood collection unit of each hospital, together with cases. All of the controls were confirmed to have no history of cancer or other neoplasm and no reported family history of CRC. Controls were randomly selected and matched with cases for hospital, sex and age (+- 5 years). A total of 370 cases and 370 controls were selected for genotyping. Hawaii Adenoma Study: For this adenoma study, two flexible-sigmoidoscopy screening clinics were first used to recruit participants on Oahu, Hawaii. Adenoma cases were identified either from the baseline examination at the Hawaii site of the Prostate Lung Colorectal and Ovarian cancer screening trial during 1996-2000 or at the Kaiser Permanente Hawaii's Gastroenterology Screening Clinic during 1995-2007. In addition, starting in 2002 and up to 2007, we also approached for recruitment all eligible patients who underwent a colonoscopy in the Kaiser Permanente Hawaii Gastroenterology Department. Cases were patients with histologically confirmed first-time adenoma(s) of the colorectum and were of Japanese, Caucasian or Hawaiian race/ethnicity. Controls were selected among patients with a normal colorectum and were individually matched to the cases on age at exam, sex, race/ethnicity, screening date (+-3 months) and clinic and type of examination (colonoscopy or flexible sigmoidoscopy). We recruited 1016 adenoma cases (67.8% of all eligible) and 1355 controls (69.2% of all eligible); 889 cases and 1169 controls agreed to give a blood and 29 cases and 34 controls, a mouthwash sample. A total of 989 cases and 1185 controls were genotyped for this study. Columbus-area HNPCC Study (HNPCC, OSUMC): Patients with colorectal adenocarcinoma diagnosed at six participating hospitals were eligible for this study, regardless of age at diagnosis or family history of cancer. Patients with a clinical diagnosis of familial adenomatous polyposis were not eligible for this study. These six hospitals perform the vast majority of all operations for CRC in the Columbus metropolitan area (population 1.7 million). The institutional review board at all participating hospitals approved the research protocol and consent form in accordance with assurances filed with and approved by the United States Department of Health and Human Services. Briefly, during the period of January 1999 through August 2004, 1,566 eligible patients with CRC were accrued to the study (Hampel et al., 2008) [PMID 18809606]. A total of 1472 colorectal cancer samples had enough blood DNA remaining to be sent for genotyping. Control samples were provided by the Ohio State University Medical Center%#39;s (OSUMC) Human Genetics Sample Bank. The Columbus Area Controls Sample Bank is a collection of control samples for use in human genetics research that includes both donors' anonymized biological specimens and linked phenotypic data. The data and samples are collected under the protocol "Collection and Storage of Controls for Genetics Research Studies", which is approved by the Biomedical Sciences Institutional Review Board at OSUMC. Recruitment takes place in OSUMC primary care and internal medicine clinics. If individuals agree to participate, they provide written informed consent, complete a questionnaire that includes demographic, medical and family history information, and donate a blood sample. 4-7 ml of blood is drawn into each of 3 ACD Solution A tubes and is used for genomic DNA extraction and the establishment of an EBV-transformed lymphoblastoid cell culture, cell pellet in Trizol, and plasma. Controls were matched to CRC cases as 1:1. Matching was done on age at reference time (age_ref), race, and sex. Age_ref was matched on +-5 years. Sex and race were matched exactly. For the cases without matched controls, matching was done only on sex and race with 1:1 ratio. Since controls are fewer than cases, one control is matched on 2 cases at most. Health Professionals Follow-up Study (HPFS): A parallel prospective study to the NHS (Nurses' Health Study). The HPFS cohort comprised 51,529 men aged 40-75 who, in 1986, responded to a mailed questionnaire (Rimm et al., 1990) [PMID: 2090285]. Participants provided information on health related exposures, including current and past smoking history, age, weight, height, diet, physical activity, aspirin use, and family history of colorectal cancer. Colorectal cancer and other outcomes were reported by participants or next-of-kin and were followed up through review of the medical and pathology record by physicians. Overall, more than 97% of self-reported colorectal cancers were confirmed by medical record review. Information was abstracted on histology and primary location. Incident cases were defined as those occurring after the subject provided the blood sample. Prevalent cases were defined as those occurring after enrollment in the study but before the subject provided the blood sample. Follow-up evaluation has been excellent, with 94% of the men responding to date. Colorectal cancer cases were ascertained through January 1, 2008. In 1993-1995, 18,825 men in the HPFS mailed blood samples by overnight courier, which were aliquoted into buffy coat and stored in liquid nitrogen. In 2001-2004, 13,956 men in the HPFS who had not provided a blood sample previously mailed in a swish-and-spit sample of buccal cells. Incident cases were defined as those occurring after the subject provided a blood or buccal sample. Prevalent cases were defined as those occurring after enrollment in the study in 1986, but before the subject provided either a blood or buccal sample. After excluding participants with histories of cancer (except nonmelanoma skin cancer), ulcerative colitis, or familial polyposis, case-control sets were previously constructed. In addition to colorectal cancer cases and controls, a set of adenoma cases and matched controls with available DNA from buffy coat were selected for genotyping. Over the follow-up period, data were collected on endoscopic screening practices and, if individuals had been diagnosed with a polyp, the polyps were confirmed to be adenomatous by medical record review. Adenoma cases were ascertained through January 1, 2008. A separate case-control set was constructed of participants diagnosed with advanced adenoma matched to control participants who underwent a lower endoscopy in the same time period and did not have an adenoma. Advanced adenoma was defined as an adenoma 1 cm or larger in diameter and/or with tubulovillous, villous, or highgrade dysplasia/carcinoma-in-situ histology. Matching criteria included year of birth (within 1 year) and month/ year of blood sampling (within 6 months), the reason for their lower endoscopy (screening, family history, or symptoms), and the time period of any prior endoscopy (within 2 years). Controls matched to cases with a distal adenoma either had a negative sigmoidoscopy or colonoscopy examination, and controls matched to cases with proximal adenoma all had a negative colonoscopy. In total, 159 advanced adenoma cases and 109 controls were selected for genotyping. Leeds Colorectal Cancer Study (LCCS): Following local ethical approval, colorectal cancer cases were recruited from 1997 until 2012 in Leeds, UK through surgical clinics. Initially, funding was provided by the UK Ministry of Agriculture, Farming and Fisheries (subsequently the Food Standards Agency) and Imperial Cancer Research Fund (subsequently Cancer Research UK). Recruitment also occurred similarly in Dundee, Perth and York between the periods of 1997 and 2001 using the same protocol and the data and samples were combined. Pathologically confirmed cases were consented at outpatient clinics, providing information on known and postulated risk factors for colorectal cancer (diet, lifestyle and family history) as well as providing a blood sample for DNA. Exclusion criteria included pre-existing diverticular disease and an inability to complete the questionnaire. The General Practitioners of cases (all UK residents have a nominated General Practitioner to whom to refer initial medical queries) and these GPs were asked to send letters to other persons on their patient list of the same gender and born within 5 years of the case. Subsequently to enhance the number of controls, we systematically invited patients from selected GP practices. Diet was assessed in cases and controls using an extensive dietary and lifestyle questionnaire modified by that produced by the European Prospective Investigation in Cancer (EPIC). The frequency that each specific food items were eaten was recorded and we also obtained average fruit and vegetable consumption as a cross-check. In total, 1591 cases and 739 controls provided a DNA sample. The North Carolina Colon Cancer Studies (NCCCS I/II): The North Carolina Colon Cancer Studies (NCCCS I- colon and NCCCS II-rectal) were population-based case-control studies conducted in 33 counties of North Carolina. Cases were identified using the rapid case ascertainment system of the North Carolina Central Cancer Registry. Patients with a first diagnosis of histologically confirmed invasive adenocarcinoma of the colon (cecum through sigmoid colon) between October 1996 and September 2000 were classified as potential cases in the NCCCS I. The NCCCS II included patients with a first diagnosis of histologically confirmed invasive adenocarcinoma of the sigmoid colon, rectosigmoid, or rectum (hereafter collectively referred to as rectal cancer) between May 2001 and September 2006. Additional eligibility requirements were: aged 40-80 years, residence in one of the 33 counties, ability to give informed consent and complete an interview, had a driver's license or identification card issued by the North Carolina Department of Motor Vehicles (if under the age of 65), and had no objections from the primary physician in regards to contacting the individual. Controls, identified and sampled during the respective study dates, were selected from two sources. Potential controls under the age of 65 were identified using the North Carolina Department of Motor Vehicles records. For those 65 years and older, records from the Center for Medicare and Medicaid Services were used. Controls were matched to cases using randomized recruitment strategies. Recruitment probabilities were done using strata of 5-year age, sex, and race groups. Dietary information was collected using a modified version of the semiquantitative food frequency questionnaire developed at the National Cancer Institute. In addition, participants were asked about vitamin and mineral supplementation, special diets, restaurant eating, sodium use, and fats used in cooking. In NCCCS I, 515 colorectal cases and 687 matched controls were sent for genotyping. In NCCCS II, 796 colorectal cases and 823 controls were sent from the NCCCS II for genotyping. Controls were matched to CRC cases as 1:1 ratio. Matching was done on age, race, and sex. Age was matched on +-5 years. Race and sex was matched exactly. For the cases without matched controls, matching was done only on sex and race. Nurses Health Study (NHS): The NHS cohort began in 1976 when 121,700 married female registered nurses age 30-55 years returned the initial questionnaire that ascertained a variety of important health-related exposures (Belanger et al., 1978) [PMID: 248266]. Since 1976, follow-up questionnaires have been mailed every 2 years. Colorectal cancer and other outcomes were reported by participants or next-of-kin and followed up through review of the medical and pathology record by physicians. Overall, more than 97% of self-reported colorectal cancers were confirmed by medical-record review. Information was abstracted on histology and primary location. The rate of follow-up evaluation has been high: as a proportion of the total possible follow-up time, follow-up evaluation has been more than 92%. Colorectal cancer cases were ascertained through June 1, 2008. In 1989 -1990, 32,826 women in NHS I mailed blood samples by overnight courier, which were aliquoted into buffy coat and stored in liquid nitrogen. In 2001-2004, 29,684 women in NHS I who did not previously provide a blood sample mailed a swish-and-spit sample of buccal cells. Incident cases were defined as those occurring after the subject provided a blood or buccal sample. Prevalent cases were defined as those occurring after enrollment in the study in 1976 but before the subject provided either a blood or buccal sample. After excluding participants with histories of cancer (except nonmelanoma skin cancer), ulcerative colitis, or familial polyposis, case-control sets were previously constructed from which DNA was isolated from either buffy coat or buccal cells for genotyping. In addition to colorectal cancer cases and controls, a set of advanced adenoma cases and matched controls with available DNA from buffy coat were selected for genotyping. Over the follow-up period, data were collected on endoscopic screening practices and, if individuals had been diagnosed with a polyp, the polyps were confirmed to be adenomatous by medical record review. Adenoma cases were ascertained through June 1, 2011. A separate case-control set was constructed of participants diagnosed with advanced adenoma matched to control participants who underwent a lower endoscopy in the same time period and did not have an adenoma. Advanced adenoma was defined as an adenoma more than 1 cm in diameter and/or with tubulovillous, villous, or high-grade dysplasia/carcinoma-in-situ histology. Matching criteria included year of birth (within 1 year) and month/year of blood sampling (within 6 months), the reason for their lower endoscopy (screening, family history, or symptoms), and the time period of any prior endoscopy (within 2 years). Controls matched to cases with a distal adenoma either had a negative sigmoidoscopy or colonoscopy examination, and controls matched to cases with proximal adenoma all had a negative colonoscopy. A total of 272 cases and 236 matched controls were sent to CIDR for the advanced adenoma case-control set. Northern Swedish Health and Disease Study (NSHDS): Comprises over 110,000 participants, including approximately one third with repeated sampling occasions, from three population-based cohorts (Dahlin et al., 2010; Myte et al., 2016) [PMID: 20197478; PMID: 27367522]. The largest is the ongoing Vasterbotten Intervention Programme, in which all residents of Vasterbotten County are invited to a health examination upon turning 30 (some years), 40, 50 and 60 years of age. Extensive measured and self-reported health and lifestyle data, as well as blood samples for central biobanking in Umea, Sweden, are collected at the health exam. Leucocyte DNA samples for 1:1-matched CRC case-control sets from the NSHDS, of which 878 samples are included in this study, have been selected for genotyping. This is in addition to 354 samples from the NSHDS previously analyzed as part of the multicenter EPIC cohort. Cancer-specific and overall survival data are available for all patients. For at least 425 patients, archival tumor tissue has been analyzed for the BRAF V600E mutation and by sequencing codon 12 and 13 for KRAS mutations, as well as for MSI screening status by immunohistochemistry and for an eight-gene CIMP panel using quantitative real-time PCR (MethyLight). Ohio Colorectal Cancer Prevention Initiative (OCCPI, OSUMC): OCCPI (ClinicalTrials.gov identifier: NCT01850654) is a population-based study of colorectal cancer patients diagnosed in one of 51 hospitals throughout the state of Ohio from January 1, 2013 through December 31, 2016. The OCCPI was created to decrease CRC incidence in Ohio by identifying patients with hereditary predisposition (statewide universal tumor screening for newly diagnosed CRC patients), increase colonoscopy compliance for first-degree relatives of CRC patients, and encourage future research through the creation of a biorepository. The 51 Ohio hospitals participating in the OCCPI were selected to represent a cross-section of clinical centers in the state based on high reported volume of CRC patients, affiliation with a high volume hospital, or interest in participation. Institutional Review Board (IRB) approval was obtained by the individual hospitals, Community Oncology Programs, or by ceding review to the OSU IRB. Written informed consent was obtained. A total of 2139 colorectal cases were genotyped. Patients were considered eligible for this study if they were age 18 or older at the time of enrollment, if they had a surgical resection (or biopsy if unresectable) in the state of Ohio demonstrating an adenocarcinoma of the colorectum from 1/1/13 - 12/31/16. Matched control samples were selected from the Ohio State University Medical Center's (OSUMC) Human Genetics Sample Bank in an identical way to the selection for the Columbus-area HNPCC Study (please refer to the description for the Columbus-area HNPCC Study). Prostate, Lung, Colorectal and Ovarian Cancer Screening Trail (PLCO): PLCO enrolled 154,934 participants (men and women, aged between 55 and 74 years) at ten centers into a large, randomized, two-arm trial to determine the effectiveness of screening to reduce cancer mortality. Sequential blood samples were collected from participants assigned to the screening arm. Participation was 93% at the baseline blood draw. In the observational (control) arm, buccal cells were collected via mail using the "swish-and-spit" protocol and participation rate was 65%. Details of this study have been previously described (Huang et al., 2016) [PMID: 27673363] and are available online (http://dcp.cancer.gov/plco). For this study 1651 advanced adenoma cases and 1392 controls were selected for genotyping. Selenium and Vitamin E Prevention Trial (SELECT): The Selenium and Vitamin E Cancer Prevention Trial (SELECT) was a double-blind, placebo controlled clinical trial which explored using selenium and vitamin E alone and in combination to prevent prostate cancer in healthy men (Lippman et al., 2009) [PMID: 19066370]. Secondary endpoints included the prevention of colorectal and lung cancers. SELECT was conducted at 427 sites and centers in the United States, Canada and Puerto Rico; 35,533 men 55 years and older (50 or older if African American) were randomized beginning August 22, 2001. Supplementation was discontinued on October 23, 2008 due to futility. 308 colorectal cancer cases and 308 matched controls were selected from the SELECT population and sent for genotyping. Screening Markers For Colorectal Disease Study and Colonoscopy and Health Study (SMS-REACH): Details on this study population were previously reported (Burnett-Hartman et al., 2014) [PMID: 24875374]. Participants were enrollees in an integrated health-care delivery system in western Washington State (Group Health Cooperative, Seattle, Washington) aged 24-79 years who underwent an index colonoscopy for any indication between 1998 and 2007 and donated a buccal-cell or blood sample for genotyping analysis. Study recruitment took place in 2 phases, with phase 1 occurring in 1998-2003 and phase 2 occurring in 2004-2007. Persons who had undergone a colonoscopy less than 1 year prior to the index colonoscopy, persons with inadequate bowel preparation for the index colonoscopy, and persons with a prior or new diagnosis of colorectal cancer, a familial colorectal cancer syndrome (such as familial adenomatous polyposis), or another colorectal disease were ineligible. Patients diagnosed with adenomas or serrated polyps and persons who were polyp-free at the index colonoscopy (controls) were systematically recruited during both phases of recruitment. Approximately 75% agreed to participate and provided written informed consent. Based on medical records, persons who agreed to participate and those who refused study participation were similar with respect to age, sex, and colorectal polyp status. Study protocols were approved by the institutional review boards of the Group Health Cooperative and the Fred Hutchinson Cancer Research Center (Seattle, Washington). A total of 575 cases and 508 matched were selected for the study. Controls were matched to CRC cases as 1:1 ratio. Matching was done on age_ref, race, and sex. Age_ref was matched on +-5 years. The Women's Health Initiative (WHI): WHI is a long-term national health study that has focused on strategies for preventing heart disease, breast and colorectal cancer, and osteoporotic fractures in postmenopausal women. The original WHI study included 161,808 postmenopausal women enrolled between 1993 and 1998. The Fred Hutchinson Cancer Research Center in Seattle, WA serves as the WHI Clinical Coordinating Center for data collection, management, and analysis of the WHI. The WHI has two major parts: a partial factorial randomized Clinical Trial (CT) and an Observational Study (OS); both were conducted at 40 Clinical Centers nationwide. The CT enrolled 68,132 postmenopausal women between the ages of 50-79 into trials testing three prevention strategies. If eligible, women could choose to enroll in one, two, or all three of the trial components. The components are: Hormone Therapy Trials (HT): This double-blind component examined the effects of combined hormones or estrogen alone on the prevention of coronary heart disease and osteoporotic fractures, and associated risk for breast cancer. Women participating in this component with an intact uterus were randomized to estrogen plus progestin (conjugated equine estrogens [CEE], 0.625 mg/d plus medroxyprogesterone acetate [MPA] 2.5 mg/d] or a matching placebo. Women with prior hysterectomy were randomized to CEE or placebo. Both trials were stopped early, in July 2002 and March 2004, respectively, based on adverse effects. All HT participants continued to be followed without intervention until close-out. Dietary Modification Trial (DM): The Dietary Modification component evaluated the effect of a low-fat and high fruit, vegetable and grain diet on the prevention of breast and colorectal cancers and coronary heart disease. Study participants were randomized to either their usual eating pattern or a low-fat dietary pattern. Calcium/Vitamin D Trial (CaD): This double-blind component began 1 to 2 years after a woman joined one or both of the other clinical trial components. It evaluated the effect of calcium and vitamin D supplementation on the prevention of osteoporotic fractures and colorectal cancer. Women in this component were randomized to calcium (1000 mg/d) and vitamin D (400 IU/d) supplements or a matching placebo. The Observational Study (OS)examines the relationship between lifestyle, environmental, medical and molecular risk factors and specific measures of health or disease outcomes. This component involves tracking the medical history and health habits of 93,676 women not participating in the CT. Recruitment for the observational study was completed in 1998 and participants were followed annually for 8 to 12 years. All centrally confirmed cases of invasive colorectal cancers, or deaths from colorectal cancer were selected as potential cases from September 30, 2015 database. Controls were participants free of colorectal cancer (invasive or in situ) as of September 30, 2015. Potential cases and controls were excluded if they (1) were non-White; (2) had history of colorectal cancers at baseline; (3) lost to follow-up after enrollment; (4) DbGAP ineligible; (5) had <1.25ug of DNA; (6) selected for WHI study M26 Phase I or II; (7) selected for WHI study AS224 and also included in the imputation project. A total of 578 cases and 104,429 controls met the eligibility criteria. Each case was matched with 1 control (1:1) that exactly met the following matching criteria: age (+-5 years), 40 randomization centers (exact), WHI date (+-3 years), CaD date (+-3 years), OS flag (exact), HRT assignments (exact), DM assignments (exact), and CaD assignments (exact). Control selection was done in a time-forward manner, selecting one control for each case from the risk set at the time of the case's event. The matching algorithm was allowed to select the closest match based on a criteria to minimize an overall distance measure (Bergstralh EJ, Kosanke JL. Computerized matching of cases to controls. Technical Report #56, Department of Health Sciences Research, Mayo Clinic, Rochester MN. April 1995). Each matching factor was given the same weight. When exact matches could not be found, the matching criteria were gradually relaxed among unmatched cases and controls until all cases had found matched controls. Using the matching criteria specified above, 559 of the 578 eligible cases found exact matches. The matching criteria was then relaxed to : Age+-5, randomization centers, WHI date +- 3 years, CaD date +- 3 years, OS flag, HRT flag, DM flag, CaD flag. 17 of the remaining 19 unmatched cases found matched controls. By matching on Age+-5, randomization centers, WHI date +- 3 years, CaD date +- 3 years, OS flag, HRT flag, the remaining 2 unmatched cases found their matches.
Enabling discovery and access to sensitive data across national boundaries is vital for improving human health. It enables more powerful and efficient research by increasing the volume and diversity of data available for analysis. It allows us to better understand the causes of diseases – cancer, rare diseases, infectious diseases like COVID-19 – and develop new medicines and treatments. Sensitive human omics data are typically generated by research initiatives and shared using specialist repositories which provide services for data submission, discovery, and access. The EGA is one such repository. Established in 2008 at EMBL’s European Bioinformatics Institute (EMBL-EBI) in the UK, since 2012 the EGA (“Central EGA”) has been jointly managed by EMBL-EBI and the Centre for Genomic Regulation (CRG) in Spain. Many countries have emerging personalised medicine programmes which generate data from national initiatives. These programmes are driving a transition in human genomics from being research-driven to receiving funding through healthcare. Data generated in a clinical context are subject to stricter governance than research data and must follow national data protection legislation. To solve these challenges, the Federated EGA provides a network of connected resources to enable transnational discovery of and access to human omics data for research, while also respecting jurisdictional data protection regulations. In this way, the Federated EGA infrastructure supports the goals of European initiatives such as the 1+ Million Genomes initiative (1+MG), the European Health Data Space, and a number of EU-funded 1+MG implementation projects including Beyond 1 Million Genomes. The Federated EGA is made up of “Nodes” – typically nationally funded and operated – which store and manage data locally while allowing global discovery within the Federated EGA network. Since 2016, multiple parallel efforts, supported by ELIXIR and other transnational and national initiatives, have created technical and legal frameworks for establishing the Federated EGA. In 2022, the first five Nodes – Finland, Germany, Norway, Spain, and Sweden – officially joined the Federated EGA by signing Federated EGA Collaboration Agreements with Central EGA. The Finnish FEGA Node is operated by CSC - IT Center for Science and provides data management services according to national laws and the requirements of the EU General Data Protection Regulation (GDPR). These services provide tools and support for the whole life-cycle of sensitive research data from collating to analysis, publication, and authorised re-use. The development of the services has been a joint effort with the other Nordic nodes within NeIC's Tryggve and Heilsa projects, and funded by Finnish Ministry of Education and Culture and projects coordinated by ELIXIR Finland. Read more about Finnish FEGA signing. The German Human Genome-Phenome Archive (GHGA) strives to provide a national infrastructure as well as an ethical and legal framework that balances FAIR omics data usage and data protection needs for Germany. As a Germany-wide consortium funded by the German Research Foundation under the umbrella of the NFDI association, GHGA combines the expertise of 21 universities and research institutions to form a federated national infrastructure. Read more about GHGA signing. The German Human Genome-Phenome Archive (GHGA) strives to provide a national infrastructure as well as an ethical and legal framework that balances FAIR omics data usage and data protection needs for Germany. As a Germany-wide consortium funded by the German Research Foundation under the umbrella of the NFDI association, GHGA combines the expertise of 21 universities and research institutions to form a federated national infrastructure. Read more about GHGA signing. In Norway, a key component of the infrastructure is the services of The Sensitive Data Service (TSD) offered by USIT at University of Oslo. The Federated EGA Norway Node is developed by ELIXIR Norway and operated by the University of Oslo as the responsible legal entity. Core software modules are developed jointly with the other Nordic nodes in the NeIC Tryggve and Heilsa projects. Read more about FEGA Norway signing. The Spanish FEGA (es-FEGA) is a national service for storing sensitive biomedical data in Spain. Supported by the Spanish Institute of Bioinformatics (INB) in collaboration with Central EGA, sensitive research datasets are primarily hosted at the Barcelona Supercomputing Centre facilities. The Swedish Sensitive Data Archive is a secure data archive and sharing platform for sensitive datasets. It was developed by the National Bioinformatics Infrastructure Sweden (NBIS) in collaboration with other Nordic ELIXIR Nodes through the Tryggve and Heilsa projects funded by NeIC and coordinated with Central EGA through ELIXIR. Read more about the Swedish Node signing. The Swedish Sensitive Data Archive is a secure data archive and sharing platform for sensitive datasets. It was developed by the National Bioinformatics Infrastructure Sweden (NBIS) in collaboration with other Nordic ELIXIR Nodes through the Tryggve and Heilsa projects funded by NeIC and coordinated with Central EGA through ELIXIR. Read more about the Swedish Node signing. By providing a solution for secure and efficient management of human omics data, the Federated EGA aims to foster data reuse, enable reproducibility, accelerate biomedical research, and improve human health. Find out more Interested in setting up your own Federated EGA Node? Check out the FEGA Onboarding Knowledge Base for more information. The ELIXIR Federated Human Data Community is a great entry point for anyone interested in learning more about the Federated EGA. You can: Join the ELIXIR Federated Human Data Community mailing list (select “Human Data”) Attend the ELIXIR Federated Human Data Community calls
Dental caries (also known as tooth decay) remains the most common chronic disease of childhood, five times more common than asthma and seven times more common than environmental allergies, with more than 40% of children exhibiting caries when they enter kindergarten. In 2005, it was estimated that dental health care costs were approximately $84 billion, of which 60% or about $50 billion were related to treatment of dental caries. Although overall caries prevalence has declined over the last 40 years, dental caries in the primary dentition and mean caries rates in children ages 2-11 has increased markedly over the past 12 years. Childhood caries is a serious public health issue because of associated health problems and because disparities in oral health have led to substantially higher average disease prevalence among children in poverty and in under-served racial and ethnic groups. These issues are of such concern that in 2005, the American Academy of Pediatrics made children's oral health one of their top areas of focus, as it is for the majority of the NIDCR "Disparities Centers". The etiology of dental caries has been studied for many years. Multiple factors contribute to a person's risk for caries, including: 1) environmental factors such as diet, oral hygiene, fluoride exposure and the level of colonization of cariogenic bacteria and 2) host factors such as salivary flow, salivary buffering capacity, position of teeth relative to each other, surface characteristics of tooth enamel and depth of occlusal fissures on posterior teeth. In spite of all that is known about this disease, there are still individuals who appear to be more susceptible to caries and those who are extremely resistant, regardless of the environmental risk factors to which they are exposed, implying that genetic factors also play an important role in caries etiology. This conclusion is supported by studies in both humans and animals, with the most compelling evidence coming from studies of twins reared apart in which investigators found significant resemblance within monozygotic (MZ) but not dizygotic (DZ) twin pairs for percentage of teeth and surfaces restored or carious and estimated the genetic contribution to caries as 40%. Other recent studies of twins reared together estimated the heritability for caries, adjusted for age and gender, as ranging from 45-64%. Despite the strong evidence of a genetic component to risk for dental caries, there have been only a few studies of candidate genes in caries, and no published genome-wide scans. A comprehensive genome wide search is the only approach that will allow us to identify those genetic regions likely to harbor genes increasing the risk for dental caries, and eventually to identify the etiologic genes and to explore the interaction of those genes with microbiological, dietary, fluoride, and behavioral factors that are known to be associated with caries risk and progression. Therefore, the goal of this study is to perform genome-wide association (GWA) studies of dental caries with a large panel of SNP's (610,000) in families and individuals ascertained through multiple US sites (University of Pittsburgh and University of Iowa). The v2 release of this study includes 96 additional individuals who were genotyped with the CCDG: Dental Caries and CL/P in Guatemala project (dbGaP accession number phs000440) to augment the data initially presented here. These subjects were genotyped on the Illumina 610 platform to make their data comparable. This study is part of the Gene Environment Association Studies initiative (GENEVA, http://www.genevastudy.org), which was developed through the trans-NIH Genes, Environment, and Health Initiative (GEI). The overarching goal is to identify novel genetic factors that contribute to dental caries through large-scale genome-wide association studies of well-characterized families and individuals at multiple sites in the U.S. Genotyping was performed at the Johns Hopkins University Center for Inherited Disease Research (CIDR). The study was supported by the National Institute of Dental and Craniofacial Research (NIDCR, U01-DE018903). Data cleaning and harmonization were done at the GEI-funded GENEVA Coordinating Center at the University of Washington. Samples of some participants in this study were selected for further genomic analysis. These results will be available in the dbGaP CIDR study: Center for Oral Health Research in Appalachia (COHRA) Genomic Studies of Oral Health and Disease (phs001591).
This study includes 1,220 cases with young onset stroke (stroke before age 60 years) who are participants of the larger RACE study. Risk Assessment of Cerebrovascular Events (RACE) is an on-going existing case-control study of stroke now involving over 5000 imaging confirmed cases of stroke and 5000 controls, recruited from seven centers in Pakistan. The study is aimed to investigate the genetic, biomarker and lifestyle determinants of stroke and its subtypes. Cases are eligible for inclusion in the study if they: (i) are aged at least 18 years; (ii) present with a sudden onset of neurological deficit respecting a vascular territory with sustained deficit at 24 hours verified by medical attention within 72 hours after onset (onset is defined by when the patient was last seen normal and not when found with deficit); and (iii) the diagnosis is supported by CT/MRI; and (iv) present with a Modified Rankin Score < 2 prior to the stroke. Findings from patient's history, 12-lead ECG and CT or MRI of the brain. The mandatory procedures for inclusion in this investigation are: (i) clinical verification of cerebrovascular event within 72 hours of onset; (ii) neuroimaging CT (non-contrast) or MRI (MRI is not a mandatory investigation but recorded whenever ordered by the attending physician); and (iii) 12-lead ECG. All other ancillary investigations ordered by the attending physician are recorded as well. The TOAST classification method is used to classify ischemic stroke based on aetiology whereas the Oxfordshire classification is used to classify stroke neuro-anatomically. Control participants for this subset of young onset stroke were individuals enrolled in the Pakistan Risk of Myocardial Infarction Study (PROMIS), a case-control study of acute MI based in Pakistan. RACE capitalizes on the genetic data (including information on GWAS) that has already been collected from the healthy participants enrolled in PROMIS. RACE and PROMIS share similar methodology of recruitment. Participants from both these investigations are derived from similar catchment areas, hence providing an attractive opportunity for RACE to utilize PROMIS controls as common controls for genetic investigations. Controls in PROMIS were recruited following procedures and inclusion criteria as adopted for RACE cases. In order to minimize any potential selection biases, PROMIS controls selected for this stroke substudy were frequency matched to RACE cases based on age and gender and were recruited in the following order of priority: (1) non-blood related or blood related visitors of patients of the out-patient department; (2) non-blood related visitors of stroke patients; (3) patients of the out-patient department presenting with minor complaints (e.g. back pain, minor gastric complaints). Control subjects from the PROMIS study were genotyped at the Wellcome Trust Sanger Institute on the Illumina 660W Quad array. The Center for Non-Communicable Diseases, Pakistan, serves as the coordinating center for both RACE and PROMIS. More information on these research investigations can be found at www.cncdpk.com. This young onset stroke component to the RACE study was funded through the Gene Environment Association Studies initiative (GENEVA, www.genevastudy.org as one of three studies designed to assess the genetics of young onset stroke and modification of genetic effects by smoking. GENEVA is part of the trans-NIH Genes, Environment, and Health Initiative (GEI). Genotyping of 1,220 young onset stroke cases was performed at the Johns Hopkins University Center for Inherited Disease Research (CIDR). Data cleaning and harmonization were done at the GEI-funded GENEVA Coordinating Center at the University of Washington. This study is part of the Gene Environment Association Studies initiative (GENEVA, http://www.genevastudy.org) funded by the trans-NIH Genes, Environment, and Health Initiative (GEI). The overarching goal is to identify novel genetic factors that contribute to stroke through large-scale genome-wide association studies of cases and controls recruited within Pakistan. Genotyping was performed at the Johns Hopkins University Center for Inherited Disease Research (CIDR). Data cleaning and harmonization were done at the GEI-funded GENEVA Coordinating Center at the University of Washington.
The Genomics and Transcriptomics of Human Insulinoma (GETHIN) The common forms of diabetes - Types 1 and 2 - ultimately result from a deficiency of insulin-producing pancreatic beta cells. The Genomics and Transcriptomics of Human Insulinoma (GETHIN) study was performed in order to identify novel approaches to inducing human pancreatic beta cells to replicate and regenerate. As a corollary, developing drugs that are able to expand human beta cell mass in people with diabetes should reverse diabetes. Unfortunately, identifying druggable pathways that can enhance human beta cell replication has been a major challenge. In 2017, there is only one class of drugs - the harmine analogues - that can induce human beta cells to replicate, and in this case, higher replication rates are desirable. Thus, identifying additional drugs and druggable pathways is a priority in diabetes research. Insulinomas are rare, benign adenomas of the pancreatic beta cell that cause excess insulin production and hypoglycemia: exactly the opposite of Types 1 and 2 diabetes. Beta cell proliferation rates in insulinomas are abnormally high. Thus, the premise for The Genomics and Transcriptomics of Human Insulinoma study is that benign human insulinomas hold the genomic and transcriptomic "recipe", and the repertoire of druggable pathways, that can be exploited to induce regeneration or replication of human beta cells in diabetes. Because, insulinomas are so rare, are almost always benign (non-malignant), and are easily resected by laparoscopic surgery, little attention has been paid to understanding the genomics or transcriptomics of insulinoma. There are at present only three published studies employing next-gen sequencing in insulinoma (PMID:24326773; PMID:25787250; and PMID:25763608). These studies contained 10, 7 and 8 insulinomas, respectively, and highlighted likely mutations in YY1 and MEN1. Our goal was to markedly expand the database and to add RNAseq to these earlier studies. The GETHIN study reports next-gen sequencing on 38 insulinomas, by far the largest series of human insulinomas subjected to next-gen sequencing (see the Selected publications section for reference). This includes paired (genomic plus tumor) whole exome sequencing on 26 human insulinomas (22 sequenced at Mount Sinai, 4 downloaded from Cao et al, PMID:24326773), and 25 sets of RNAseq from insulinomas, some of which also had paired whole exome sequencing, and some of which did not. The insulinoma RNAseq was compared to RNAseq from 22 sets of FACS-sorted normal human beta cells. Since insulinomas are so rare, the 38 insulinomas were collected by several investigators at several institutions over several decades, but most (22 whole exome sets, and all RNAseq) were sequenced at the Icahn School of Medicine at Mount Sinai in New York. The current dataset contains whole exome sequencing and RNAseq on the 11 insulinomas harvested at Mount Sinai. The four from Cao et al can be retrieved from Cao et al PMID:24326773. Fastq files from the remaining 23 insulinomas will be added as the local IRBs and Institutional Certifications are acquired. Complete patient data are provided in our Nature Communications report. Going forward, our intention is to expand this series, with the goal of sequencing 100 human insulinomas. These will be added to dbGaP as they accrue. Paired-end whole exome sequencing (mean usable sequencing depth 79X and 105X for blood and insulinoma, respectively) was performed using an Illumina HiSeq 2500. Insulinoma and sorted normal beta cell RNAseq was performed on Ribozero and polyA paired end libraries using the Illumina HiSeq 2500. Complete sequencing and bioinformatic details are provided in our Nature Communications report. The principal findings from the study are that although each insulinoma has a different set of presumptive driver mutations, the majority converge on genes that are members of the Polycomb Complex, Trithorax Complex and other epigenetic modifying enzymes. In addition, 20% of insulinomas have copy number loss or loss of heterozygosity of all or most of chromosome 11, and the majority display abnormalities in CpG methylation and imprinting control on the imprinted Chr 11 p15.5-15.4 region that contains INS, IGF2, CDKN1C, KCNQ1, and other genes involved in beta cell specification and proliferation.
Data Access NOTE: Please refer to the “Authorized Access” section below for information about how access to the data from this accession differs from many other dbGaP accessions. Objectives: To establish a safe and tolerable dose of sulforaphane that effects in vivo antioxidants via Nrf2 for development as a potential novel treatment for participants with Chronic Obstructive Pulmonary Disease (COPD).Background: Chronic Obstructive Pulmonary Disease (COPD), caused primarily by smoking, is the third leading cause of death in the United States and world-wide. Surprisingly, there are few treatments available to address the pathobiology of COPD other than cessation of smoking. The development and progression of COPD are associated with increased inflammatory response(s) and increased oxidative stress in the lung. Thus, one approach to the development of novel therapies is the stimulation of endogenous antioxidant defense mechanisms.Nuclear factor erythroid-2-related factor 2 (NFE2L2/Nrf2) is a transcription factor activated by oxidative stress. Nrf2 activity promotes anti-oxidant enzymes, and anti-oxidant enzymes play key roles in cellular defenses. Sulforaphane, a derivative of broccoli and other cruciferous vegetables, has been shown to stimulate Nrf2 activity in both in vivo and in vitro experiments. For example, activation of Nrf2 protected mice from developing emphysema after chronic smoke exposure and decreased oxidative stress. Similarly, activation of Nrf2 in human COPD lung cells resulted in decreased oxidative stress. Therefore, this study was designed to assess whether daily ingestion of sulforaphane by COPD participants for four weeks increased Nrf2 activity in alveolar macrophages and bronchial epithelial cells. Participants: There were a total of 89 participants randomized to one of three treatment arms. Of these, 31 participants were randomized to the placebo arm, and 29 participants were randomized to the each of the sulforaphane arms. One participant withdrew from the placebo arm, therefore, a total of 88 participants completed the study.Design: Participants were assigned to receive sulforaphane at 25 micromoles (4.4mg), sulforaphane at 150 micromoles (26.6 mg), or placebo (microcellulose) once daily by mouth. Computer-generated treatment assignments were blinded to participants, clinical staff, and study staff. Doses were back-filled with methylcellulose and presented in similar capsules to compensate for appearance and weight differences in sulforaphane and placebo treatments arms.There were a total of five study visits over the six-week study period. Prior to randomization, participants were assessed for eligibility, which included baseline data collection. Participants provided medical histories, underwent a physical examination, pre-and-post bronchodilator spirometry, lung volume measurements, carbon monoxide diffusing capacity (DLCO), and pulse oximetry over the six-week study period. Follow up data and biospecimens were collected at the final visit, which was targeted for four weeks after randomization. Two fiberoptic bronchoscopies were performed under sedation to collect endobronchial brushings and bronchoalveolar lavage used to isolate alveolar macrophages and bronchial epithelial cells. The first bronchoscopy was performed on the day of randomization, and the second bronchoscopy was performed the day after the final visit. In addition, nasal brushings were obtained prior to bronchoscopy to isolate nasal epithelial cells. The primary outcomes were changes in Nrf2 target gene expression at four weeks in alveolar macrophages and bronchial epithelial cells. The target genes for the primary outcome were NQ01, H01, AKR1C1, and AKR1C3. Secondary outcomes included the evaluation of: expression of other genes in the Nrf2/Keap1 pathway (e.g. Nrf2/NFE2L2, KEAP1, and SLPI), markers of oxidative stress (e.g., isoprostane and thiobarbituric acid reactive substances) in plasma and expired breath condensate, and cytokine profiles in bronchoalveolar lavage fluid. Conclusions: Sulforaphane administered at four weeks doses of 25umoles and 150umoles to participants with COPD did not significantly increase Nrf2 target gene expression in alveolar macrophages or bronchial epithelial cells. In addition, changes in oxidative stress markers and the expression of other genes in the Nrf2/Keap1 pathway were not statistically significant between the treatment groups.Wise RA, Holbrook JT, Criner G, et al. Lack of Effect of Oral Sulforaphane Administration on Nrf2 Expression in COPD: A Randomized, Double-Blind, Placebo Controlled Trial. Vij N, ed. PLoS ONE. 2016; 11(11):e0163716. doi:10.1371/journal.pone.0163716 (PMID: 27832073; PMID: 28350841).