Head and neck squamous cell carcinoma (HNSCC) is the sixth leading cancer by incidence worldwide(1). Various chemical carcinogens (tobacco, alcohol and betel nut), human papillomavirus (HPV) infection, and genetic predisposition contribute to the etiology of HNSCC, and to the complex genetic alterations in tumor subsets that differ in prognosis and response to therapies (2). Recently, a comprehensive landscape of genomic and transcriptomic alterations in HNSCC tumors has emerged from The Cancer Genome Atlas (TCGA) Network (3). TCGA revealed novel and previously recognized gene and chromosomal region copy number alterations (CNAs), mutations, and expression clusters, and defined their frequency, co-occurrence, and relationship to common and rare subtypes of HPV(-) and (+) tumors that vary in prognosis. To identify cell line models for determining the functional role and therapeutic importance of these alterations, we are performing whole exome and RNA sequencing and bioinformatic analysis of an expanded panel of 15 HPV(-) and 11 HPV(+) HNSCC cell lines and primary oral keratinocytes. We find that the recurrent genomic alterations in cell lines are remarkably consistent with those found in more aggressive tumors, from which cell lines have traditionally been most readily adapted to culture (4). Genome-wide correlation of CN (copy number) with expression identified a suite of potential drivers or modifier genes that differ by HPV status, and are of potential biologic and therapeutic relevance. Further, our findings elucidate and validate genomic alterations underpinning numerous discoveries made with these widely-used and recently derived HNSCC lines, and provide a roadmap for their potential use as models for future studies of tumor subtypes with worse prognosis. References Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87-108. Van Waes C, Musbahi O. Genomics and advances towards precision medicine for head and neck squamous cell carcinoma. Laryngoscope Investig Otolaryngol. 2017;2(5):310-9. Cancer Genome Atlas N. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015;517(7536):576-82. White JS, Weissfeld JL, Ragin CC, Rossie KM, Martin CL, Shuster M, et al. The influence of clinical and demographic risk factors on the establishment of head and neck squamous cell carcinoma cell lines. Oral Oncol. 2007;43(7):701-12.
The purpose of this project is to identify genes associated with normal human quantitative facial variation. The motivation for this project stems from the fact that very little is known about how variation in specific genes relates to the diversity of facial forms commonly observed in humans. Viable candidates for these morphogenes originate from a number of sources: tissue expression studies, animal models with targeted or spontaneous mutations, and genetic syndromes with craniofacial manifestations. Importantly, understanding the genetic basis for normal facial variation also has important implications for health-related research. For example, this work has the potential to shed light on the factors influencing liability to common craniofacial anomalies such as orofacial clefts. There is now ample evidence that certain facial features (e.g., increased midfacial retrusion) characterize individuals genetically at-risk for orofacial clefts (e.g., biological relatives of affected cases). While these predisposing facial features are statistically over-represented in at-risk groups, they are also common in the general population. Since many of the current candidate genes for clefting are thought to play a critical role in facial morphogenesis, variation in these genes may also underlie normal variation in these facial features. These candidate genes, however, probably represent only a small fraction of the total number of loci influencing normal human facial variation. Phenotypes for this project were obtained from over 3000 healthy Caucasian subjects recruited through three separate studies. The majority of the subjects were recruited as part of the 3D Facial Norms Project, which is described in extensive detail here: (https://www.facebase.org/facial_norms/notes). The provided dbGaP phenotypes include a series of anthropometric craniofacial measurements (linear distances) primarily derived from 3D photographic facial surface scans (see previous hyperlink). The specific genotyping requested is described elsewhere in this document. Our analysis team is pursuing a variety of different analytic approaches to derive genetically informative phenotypes, including various shape-based morphometric methods. For those interested in pursuing more advanced phenotypic approaches, the original 3D surface scans and additional phenotypic traits are available to researchers through the FaceBase Consortium. This dataset has the potential to facilitate the discovery of new genetic loci with an important role in both normal and abnormal facial development. It may also serve as a dataset to test hypotheses regarding specific SNP associations (e.g. as a replication dataset) or as part of a larger meta-analysis.
Subpopulations and Intermediate Outcome Measures in COPD Study Description Subpopulations and intermediate outcome measures in COPD study (SPIROMICS) supports the prospective collection and analysis of phenotypic, biomarker, genetic, genomic, and clinical data from subjects with COPD for the purpose of identifying subpopulations and intermediate outcome measures. It is funded by the National Heart, Lung, and Blood Institute and is coordinated by the University of North Carolina at Chapel Hill. Molecular fingerprinting and extensive subject phenotyping will be performed to identify disease subpopulations and to identify and validate surrogate markers of disease severity which will be useful as intermediate outcome measures for future clinical trials. Secondary aims are to clarify the natural history of COPD, to develop bioinformatic resources that will enable the utilization and sharing of data in studies of COPD and related diseases, and to create a collection of clinical, biomarker, radiographic, and genetic data that can be used by external investigators for other studies of COPD. Participating Institutions: Research participants for SPIROMICS will be enrolled, phenotyped, and followed at twelve SPIROMICS Clinical Centers: Columbia University, Temple University, Johns Hopkins University, Wake Forest University, University of Michigan, University of Illinois at Chicago, University of Iowa, University of Utah, National Jewish Health, University of Alabama at Birmingham, University of California at San Francisco, and University of California at Los Angeles. The University of North Carolina at Chapel Hill serves as the Genomics and Informatics Center. The Radiology Reading Center is based at the University of Iowa. The PFT Reading Center is based at the University of California at Los Angeles. Study Design: SPIROMICS is a prospective cohort study that enrolled approximately 2,981 participants at twelve clinical centers over five years. Participants are distributed across four enrollment strata (i.e., Never-smokers, Smokers without COPD, Mild/Moderate COPD, and Severe COPD). Study Visits: Participants have up to four in-person visits (Baseline and Annual Clinic Visits at years 1, 2, 3 after Baseline). Study questionnaires and spirometry are completed at all main study visits. Blood and urine samples are collected at visits 1, 2, and 4. Sputum samples are collected at Visit 1. The CT scans are completed and Baseline and Visit 2. Participants also receive quarterly follow-up calls to assess health status and determine if an exacerbation has occurred. Substudies A. Bronchoscopy and Immunophenotyping Substudy The Bronchoscopy Substudy enrolled a total of 251 participants. These participants will be recruited across all four study strata. This substudy includes two study visits. During the first visit sputum samples are collected for Immunophenotyping analysis at the Immunophenotyping Core Lab based at the University of Michigan. Participants then return for a second visit during which samples are collected via bronchoscopy, including bronchoalveolar lavage, epithelial brushings and bronchial biopsies. Immunophenotyping analysis is also conducted on BAL and blood collected during the bronchoscopy study visit. B. Repeatability Substudy The entire baseline clinic visit was repeated on 98 volunteers to determine reliability of measurement procedures. All baseline study-related procedures and questionnaires, including the CT scan, was re-administered and new samples of blood, urine, saliva, and sputum was collected. Field center staff processed these biospecimen samples according to the same protocol. C. Exacerbation Substudy The Exacerbation Substudy is a prospective, longitudinal observational study of 204 participants, which will allow the assessment of participant driven health care utilization (HCU) events and symptom-defined exacerbation events over time. HCU driven events are defined by change in medical treatment in response to a perceived COPD Exacerbation. Symptom-based events will be defined by using EXACT-PRO (EXacerbations of Chronic Pulmonary Disease Tool - Patient Reported Outcome) a daily symptom diary developed to measure the frequency, severity, and duration of exacerbations in clinical trials. All participants are provided with a PDA on which to complete the diary. Participants reporting a possible COPD exacerbation will be brought into the study clinic for a study visit to collect biological specimens and questionnaire data. The overall objectives of the exacerbation substudy are to: Obtain clinical data and specimens on SPIROMICS participants before and during an acute COPD exacerbation defined by: Health care utilization triggered by the subject, or Symptomatic change (triggered by an EXACT defined threshold) Describe symptomatic changes occurring around HCU and symptom-defined (EXACT) events and their relationship to clinical and specimen data Characterize the non-exacerbation "stable" state in COPD using the EXACT, including: Symptom variability (EXACT), Clinical data and specimen parameters during a stable state (baseline), The relationship between clinical and specimen data and symptom severity and variability. Explore the characteristics of stable patients, defined as those who do not experience HCU or symptom-defined (EXACT) events during the sub-study period, using baseline clinical data and specimens and compare these characteristics with patients who experience HCU and/or symptom-defined events. Examine the relationship between HCU and symptom-defined exacerbation frequency during the first one-year period of follow-up for exacerbations and health outcomes, including 12-month change in lung function and COPD health status, and longer term morbidity and mortality, with the latter derived from long-term data from the larger SPIROMICS study.
Mammographic density (MD) is a strong risk factor for breast cancer and is also a highly heritable trait with ~60-70% of the variance due to genetic factors, based on twin studies. MD is also higher in families with a strong history of breast cancer. Genome-wide association studies (GWAS), which focus on common genetic variants, have identified several single nucleotide polymorphisms (SNPs) associated with MD. However, these SNPs explain a very small fraction of the variance of MD, suggesting many other genes are involved. Thus, the vast majority of the heritability of mammographic density remains unexplained and may be explained, at least in part, by rare variants. Ashkenazi Jewish women are a founder population; founder populations frequently have alleles affecting phenotypes which may be unique and/or extremely rare in other populations. Prior reports have identified an association between higher mammographic density and Ashkenazi Jewish ancestry. Therefore, we developed a study of mammographic density in AJ women. We combined datasets from several different cohorts including (a) the California Pacific Medical Center Research Institute (b) the Athena Breast Health Cohort and (c) the Marin Women's study. In each study, we identified women who reported AJ ancestry (determined by self-report or by genetic analysis). We identified mammograms by linking the women to the San Francisco Mammography Registry. We retrieved digital mammographic results and used software to infer volumetric density and percent volumetric density for each woman. We then performed genome-wide genotyping of the samples using the Illumina MEGA array.
Maintaining calcium levels within a narrow normal range is of critical importance for numerous different cellular functions. One of the most important regulators of blood calcium levels is parathyroid hormone (PTH), which mediates its actions through the PTH/PTHrP receptor, a Gαs-coupled receptor. Few inherited disorders are characterized by diminished blood calcium levels and elevated blood phosphate levels; some of these disorders are caused by too little PTH synthesis and/or secretion (hypoparathyroidism, HP), while others are caused by resistance towards PTH (pseudohypoparathyroidism, PHP). Only few of the inherited forms of HP (<10%) have been defined at the molecular level. In contrast, genetic mutations have been identified for several inherited forms of PHP. For example, PHP type Ia (PHP-Ia) is caused by maternally inherited mutations in those GNAS exons that encode Gαs, while autosomal dominant PHP type Ib (AD-PHP-Ib) is caused by maternal inherited deletions within or up-stream of GNAS, which are associated with abnormal GNAS methylation. However, a large number of patients with PTH-resistance and thus hypocalcemia show GNAS methylation changes, but their underlying genetic defects have not yet been defined at the DNA level. These "sporadic" patients may be affected by an autosomal recessive form of PHP-Ib (AR-PHP-Ib), which is most likely not linked to the GNAS locus. In our studies, we propose to search through exome sequence analyses for novel genetic mutations responsible for novel autosomal dominant forms of HP that are not caused by mutations in the known disease-causing genes; some of these families are large enough to perform genetic linkage studies. We furthermore propose to search for the genetic mutation(s) responsible for the autosomal recessive variant of PHP-Ib through the analysis of whole exome sequences; for these studies we focus particularly on patients, whose parents are likely to be consanguineous. The proposed efforts are expected to lead to the identification of novel genes that are involved in parathyroid development and function (HP) and genes that are involved in the establishment or maintenance of GNAS methylation (AR-PHP-Ib).
The GenSalt study aims to identify genes which interact with dietary sodium and potassium intake to influence blood pressure in Han Chinese participants from rural north China. Whole genome sequencing will be conducted among 1,860 participants of the Genetic Epidemiology Network of Salt Sensitivity (GenSalt) Study. We will work in collaboration with participating TOPMed studies to identify novel common, low-frequency and rare variants associated with an array of cardiometabolic phenotypes. In addition, we will explore the relation of low-frequency and rare variants with salt-sensitivity among GenSalt study participants.
Original description of the study: From ELLIPSE (linked to the PRACTICAL consortium), we contributed ~78,000 SNPs to the OncoArray. A large fraction of the content was derived from the GWAS meta-analyses in European ancestry populations (overall and aggressive disease; ~27K SNPs). We also selected just over 10,000 SNPs from the meta-analyses in the non-European populations, with a majority of these SNPs coming from the analysis of overall prostate cancer in African ancestry populations as well as from the multiethnic meta-analysis. A substantial fraction of SNPs (~28,000) were also selected for fine-mapping of 53 loci not included in the common fine-mapping regions (tagging at r2>0.9 across ±500kb regions). We also selected a few thousand SNPs related with PSA levels and/or disease survival as well as SNPs from candidate lists provided by study collaborators, as well as from meta-analyses of exome SNP chip data from the Multiethnic Cohort and UK studies. The Contributing Studies: Aarhus: Hospital-based, Retrospective, Observational. Source of cases: Patients treated for prostate adenocarcinoma at Department of Urology, Aarhus University Hospital, Skejby (Aarhus, Denmark). Source of controls: Age-matched males treated for myocardial infarction or undergoing coronary angioplasty, but with no prostate cancer diagnosis based on information retrieved from the Danish Cancer Register and the Danish Cause of Death Register. AHS: Nested case-control study within prospective cohort. Source of cases: linkage to cancer registries in study states. Source of controls: matched controls from cohort ATBC: Prospective, nested case-control. Source of cases: Finnish male smokers aged 50-69 years at baseline. Source of controls: Finnish male smokers aged 50-69 years at baseline BioVu: Cases identified in a biobank linked to electronic health records. Source of cases: A total of 214 cases were identified in the VUMC de-identified electronic health records database (the Synthetic Derivative) and shipped to USC for genotyping in April 2014. The following criteria were used to identify cases: Age 18 or greater; male; African Americans (Black) only. Note that African ancestry is not self-identified, it is administratively or third-party assigned (which has been shown to be highly correlated with genetic ancestry for African Americans in BioVU; see references). Source of controls: Controls were identified in the de-identified electronic health record. Unfortunately, they were not age matched to the cases, and therefore cannot be used for this study. Canary PASS: Prospective, Multi-site, Observational Active Surveillance Study. Source of cases: clinic based from Beth Israel Deaconness Medical Center, Eastern Virginia Medical School, University of California at San Francisco, University of Texas Health Sciences Center San Antonio, University of Washington, VA Puget Sound. Source of controls: N/A CCI: Case series, Hospital-based. Source of cases: Cases identified through clinics at the Cross Cancer Institute. Source of controls: N/A CerePP French Prostate Cancer Case-Control Study (ProGene): Case-Control, Prospective, Observational, Hospital-based. Source of cases: Patients, treated in French departments of Urology, who had histologically confirmed prostate cancer. Source of controls: Controls were recruited as participating in a systematic health screening program and found unaffected (normal digital rectal examination and total PSA < 4 ng/ml, or negative biopsy if PSA > 4 ng/ml). COH: hospital-based cases and controls from outside. Source of cases: Consented prostate cancer cases at City of Hope. Source of controls: Consented unaffected males that were part of other studies where they consented to have their DNA used for other research studies. COSM: Population-based cohort. Source of cases: General population. Source of controls: General population CPCS1: Case-control - Denmark. Source of cases: Hospital referrals. Source of controls: Copenhagen General Population Study CPCS2: Source of cases: Hospital referrals. Source of controls: Copenhagen General Population Study CPDR: Retrospective cohort. Source of cases: Walter Reed National Military Medical Center. Source of controls: Walter Reed National Military Medical Center ACS_CPS-II: Nested case-control derived from a prospective cohort study. Source of cases: Identified through self-report on follow-up questionnaires and verified through medical records or cancer registries, identified through cancer registries or the National Death Index (with prostate cancer as the primary cause of death). Source of controls: Cohort participants who were cancer-free at the time of diagnosis of the matched case, also matched on age (±6 mo) and date of biospecimen donation (±6 mo). EPIC: Case-control - Germany, Greece, Italy, Netherlands, Spain, Sweden, UK. Source of cases: Identified through record linkage with population-based cancer registries in Italy, the Netherlands, Spain, Sweden and UK. In Germany and Greece, follow-up is active and achieved through checks of insurance records and cancer and pathology registries as well as via self-reported questionnaires; self-reported incident cancers are verified through medical records. Source of controls: Cohort participants without a diagnosis of cancer EPICAP: Case-control, Population-based, ages less than 75 years at diagnosis, Hérault, France. Source of cases: Prostate cancer cases in all public hospitals and private urology clinics of département of Hérault in France. Cases validation by the Hérault Cancer Registry. Source of controls: Population-based controls, frequency age matched (5-year groups). Quotas by socio-economic status (SES) in order to obtain a distribution by SES among controls identical to the SES distribution among general population men, conditionally to age. ERSPC: Population-based randomized trial. Source of cases: Men with PrCa from screening arm ERSPC Rotterdam. Source of controls: Men without PrCa from screening arm ERSPC Rotterdam ESTHER: Case-control, Prospective, Observational, Population-based. Source of cases: Prostate cancer cases in all hospitals in the state of Saarland, from 2001-2003. Source of controls: Random sample of participants from routine health check-up in Saarland, in 2000-2002 FHCRC: Population-based, case-control, ages 35-74 years at diagnosis, King County, WA, USA. Source of cases: Identified through the Seattle-Puget Sound SEER cancer registry. Source of controls: Randomly selected, age-frequency matched residents from the same county as cases Gene-PARE: Hospital-based. Source of cases: Patients that received radiotherapy for treatment of prostate cancer. Source of controls: n/a Hamburg-Zagreb: Hospital-based, Prospective. Source of cases: Prostate cancer cases seen at the Department of Oncology, University Hospital Center Zagreb, Croatia. Source of controls: Population-based (Croatia), healthy men, older than 50, with no medical record of cancer, and no family history of cancer (1st & 2nd degree relatives) HPFS: Nested case-control. Source of cases: Participants of the HPFS cohort. Source of controls: Participants of the HPFS cohort IMPACT: Observational. Source of cases: Carriers and non-carriers (with a known mutation in the family) of the BRCA1 and BRCA2 genes, aged between 40 and 69, who are undergoing prostate screening with annual PSA testing. This cohort has been diagnosed with prostate cancer during the study. Source of controls: Carriers and non-carriers (with a known mutation in the family) of the BRCA1 and BRCA2 genes, aged between 40 and 69, who are undergoing prostate screening with annual PSA testing. This cohort has not been diagnosed with prostate cancer during the study. IPO-Porto: Hospital-based. Source of cases: Early onset and/or familial prostate cancer. Source of controls: Blood donors Karuprostate: Case-control, Retrospective, Population-based. Source of cases: From FWI (Guadeloupe): 237 consecutive incident patients with histologically confirmed prostate cancer attending public and private urology clinics; From Democratic Republic of Congo: 148 consecutive incident patients with histologically confirmed prostate cancer attending the University Clinic of Kinshasa. Source of controls: From FWI (Guadeloupe): 277 controls recruited from men participating in a free systematic health screening program open to the general population; From Democratic Republic of Congo: 134 controls recruited from subjects attending the University Clinic of Kinshasa KULEUVEN: Hospital-based, Prospective, Observational. Source of cases: Prostate cancer cases recruited at the University Hospital Leuven. Source of controls: Healthy males with no history of prostate cancer recruited at the University Hospitals, Leuven. LAAPC: Subjects were participants in a population-based case-control study of aggressive prostate cancer conducted in Los Angeles County. Cases were identified through the Los Angeles County Cancer Surveillance Program rapid case ascertainment system. Eligible cases included African American, Hispanic, and non-Hispanic White men diagnosed with a first primary prostate cancer between January 1, 1999 and December 31, 2003. Eligible cases also had (a) prostatectomy with documented tumor extension outside the prostate, (b) metastatic prostate cancer in sites other than prostate, (c) needle biopsy of the prostate with Gleason grade ≥8, or (d) needle biopsy with Gleason grade 7 and tumor in more than two thirds of the biopsy cores. Eligible controls were men never diagnosed with prostate cancer, living in the same neighborhood as a case, and were frequency matched to cases on age (± 5 y) and race/ethnicity. Controls were identified by a neighborhood walk algorithm, which proceeds through an obligatory sequence of adjacent houses or residential units beginning at a specific residence that has a specific geographic relationship to the residence where the case lived at diagnosis. Malaysia: Case-control. Source of cases: Patients attended the outpatient urology or uro-onco clinic at University Malaya Medical Center. Source of controls: Population-based, age matched (5-year groups), ascertained through electoral register, Subang Jaya, Selangor, Malaysia MCC-Spain: Case-control. Source of cases: Identified through the urology departments of the participating hospitals. Source of controls: Population-based, frequency age and region matched, ascertained through the rosters of the primary health care centers MCCS: Nested case-control, Melbourne, Victoria. Source of cases: Identified by linkage to the Victorian Cancer Registry. Source of controls: Cohort participants without a diagnosis of cancer MD Anderson: Participants in this study were identified from epidemiological prostate cancer studies conducted at the University of Texas MD Anderson Cancer Center in the Houston Metropolitan area. Cases were accrued in the Houston Medical Center and were not restricted with respect to Gleason score, stage or PSA. Controls were identified via random-digit-dialing or among hospital visitors and they were frequency matched to cases on age and race. Lifestyle, demographic, and family history data were collected using a standardized questionnaire. MDACC_AS: A prospective cohort study. Source of cases: Men with clinically organ-confined prostate cancer meeting eligibility criteria for a prospective cohort study of active surveillance at MD Anderson Cancer Center. Source of controls: N/A MEC: The Multiethnic Cohort (MEC) is comprised of over 215,000 men and women recruited from Hawaii and the Los Angeles area between 1993 and 1996. Between 1995 and 2006, over 65,000 blood samples were collected from participants for genetic analyses. To identify incident cancer cases, the MEC was cross-linked with the population-based Surveillance, Epidemiology and End Results (SEER) registries in California and Hawaii, and unaffected cohort participants with blood samples were selected as controls MIAMI (WFPCS): Prostate cancer cases and controls were recruited from the Departments of Urology and Internal Medicine of the Wake Forest University School of Medicine using sequential patient populations as described previously (PMID:15342424). All study subjects received a detailed description of the study protocol and signed their informed consent, as approved by the medical center's Institutional Review Board. The general eligibility criteria were (i) able to comprehend informed consent and (ii) without previously diagnosed cancer. The exclusion criteria were (i) clinical diagnosis of autoimmune diseases; (ii) chronic inflammatory conditions; and (iii) infections within the past 6 weeks. Blood samples were collected from all subjects. MOFFITT: Hospital-based. Source of cases: clinic based from Moffitt Cancer Center. Source of controls: Moffitt Cancer Center affiliated Lifetime cancer screening center NMHS: Case-control, clinic based, Nashville TN. Source of cases: All urology clinics in Nashville, TN. Source of controls: Men without prostate cancer at prostate biopsy. PCaP: The North Carolina-Louisiana Prostate Cancer Project (PCaP) is a multidisciplinary population-based case-only study designed to address racial differences in prostate cancer through a comprehensive evaluation of social, individual and tumor level influences on prostate cancer aggressiveness. PCaP enrolled approximately equal numbers of African Americans and Caucasian Americans with newly-diagnosed prostate cancer from North Carolina (42 counties) and Louisiana (30 parishes) identified through state tumor registries. African American PCaP subjects with DNA, who agreed to future use of specimens for research, participated in OncoArray analysis. PCMUS: Case-control - Sofia, Bulgaria. Source of cases: Patients of Clinic of Urology, Alexandrovska University Hospital, Sofia, Bulgaria, PrCa histopathologically confirmed. Source of controls: 72 patients with verified BPH and PSA<3,5; 78 healthy controls from the MMC Biobank, no history of PrCa PHS: Nested case-control. Source of cases: Participants of the PHS1 trial/cohort. Source of controls: Participants of the PHS1 trial/cohort PLCO: Nested case-control. Source of cases: Men with a confirmed diagnosis of prostate cancer from the PLCO Cancer Screening Trial. Source of controls: Controls were men enrolled in the PLCO Cancer Screening Trial without a diagnosis of cancer at the time of case ascertainment. Poland: Case-control. Source of cases: men with unselected prostate cancer, diagnosed in north-western Poland at the University Hospital in Szczecin. Source of controls: cancer-free men from the same population, taken from the healthy adult patients of family doctors in the Szczecin region PROCAP: Population-based, Retrospective, Observational. Source of cases: Cases were ascertained from the National Prostate Cancer Register of Sweden Follow-Up Study, a retrospective nationwide cohort study of patients with localized prostate cancer. Source of controls: Controls were selected among men referred for PSA testing in laboratories in Stockholm County, Sweden, between 2010 and 2012. PROGReSS: Hospital-based, Prospective, Observational. Source of cases: Prostate cancer cases from the Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain. Source of controls: Cancer-free men from the same population ProMPT: A study to collect samples and data from subjects with and without prostate cancer. Retrospective, Experimental. Source of cases: Subjects attending outpatient clinics in hospitals. Source of controls: Subjects attending outpatient clinics in hospitals ProtecT: Trial of treatment. Samples taken from subjects invited for PSA testing from the community at nine centers across United Kingdom. Source of cases: Subjects who have a proven diagnosis of prostate cancer following testing. Source of controls: Identified through invitation of subjects in the community. PROtEuS: Case-control, population-based. Source of cases: All new histologically-confirmed cases, aged less or equal to 75 years, diagnosed between 2005 and 2009, actively ascertained across Montreal French hospitals. Source of controls: Randomly selected from the Provincial electoral list of French-speaking men between 2005 and 2009, from the same area of residence as cases and frequency-matched on age. QLD: Case-control. Source of cases: A longitudinal cohort study (Prostate Cancer Supportive Care and Patient Outcomes Project: ProsCan) conducted in Queensland, through which men newly diagnosed with prostate cancer from 26 private practices and 10 public hospitals were directly referred to ProsCan at the time of diagnosis by their treating clinician (age range 43-88 years). All cases had histopathologically confirmed prostate cancer, following presentation with an abnormal serum PSA and/or lower urinary tract symptoms. Source of controls: Controls comprised healthy male blood donors with no personal history of prostate cancer, recruited through (i) the Australian Red Cross Blood Services in Brisbane (age range 19-76 years) and (ii) the Australian Electoral Commission (AEC) (age and post-code/ area matched to ProsCan, age range 54-90 years). RAPPER: Multi-centre, hospital based blood sample collection study in patients enrolled in clinical trials with prospective collection of radiotherapy toxicity data. Source of cases: Prostate cancer patients enrolled in radiotherapy trials: CHHiP, RT01, Dose Escalation, RADICALS, Pelvic IMRT, PIVOTAL. Source of controls: N/A SABOR: Prostate Cancer Screening Cohort. Source of cases: Men >45 yrs of age participating in annual PSA screening. Source of controls: Males participating in annual PSA prostate cancer risk evaluations (funded by NCI biomarkers discovery and validation grant), recruited through University of Texas Health Science Center at San Antonio and affiliated sites or through study advertisements, enrolment open to the community SCCS: Case-control in cohort, Southeastern USA. Prospective, Observational, Population-based. Source of cases: SCCS entry population. Source of controls: SCCS entry population SCPCS: Population-based, Retrospective, Observational. Source of cases: South Carolina Central Cancer Registry. Source of controls: Health Care Financing Administration beneficiary file SEARCH: Case-control - East Anglia, UK. Source of cases: Men < 70 years of age registered with prostate cancer at the population-based cancer registry, Eastern Cancer Registration and Information Centre, East Anglia, UK. Source of controls: Men attending general practice in East Anglia with no known prostate cancer diagnosis, frequency matched to cases by age and geographic region SNP_Prostate_Ghent: Hospital-based, Retrospective, Observational. Source of cases: Men treated with IMRT as primary or postoperative treatment for prostate cancer at the Ghent University Hospital between 2000 and 2010. Source of controls: Employees of the University hospital and members of social activity clubs, without a history of any cancer. SPAG: Hospital-based, Retrospective, Observational. Source of cases: Guernsey. Source of controls: Guernsey STHM2: Population-based, Retrospective, Observational. Source of cases: Cases were selected among men referred for PSA testing in laboratories in Stockholm County, Sweden, between 2010 and 2012. Source of controls: Controls were selected among men referred for PSA testing in laboratories in Stockholm County, Sweden, between 2010 and 2012. PCPT: Case-control from a randomized clinical trial. Source of cases: Randomized clinical trial. Source of controls: Randomized clinical trial SELECT: Case-cohort from a randomized clinical trial. Source of cases: Randomized clinical trial. Source of controls: Randomized clinical trial TAMPERE: Case-control - Finland, Retrospective, Observational, Population-based. Source of cases: Identified through linkage to the Finnish Cancer Registry and patient records; and the Finnish arm of the ERSPC study. Source of controls: Cohort participants without a diagnosis of cancer UGANDA: Uganda Prostate Cancer Study: Uganda is a case-control study of prostate cancer in Kampala Uganda that was initiated in 2011. Men with prostate cancer were enrolled from the Urology unit at Mulago Hospital and men without prostate cancer (i.e. controls) were enrolled from other clinics (i.e. surgery) at the hospital. UKGPCS: ICR, UK. Source of cases: Cases identified through clinics at the Royal Marsden hospital and nationwide NCRN hospitals. Source of controls: Ken Muir's control- 2000 ULM: Case-control - Germany. Source of cases: familial cases (n=162): identified through questionnaires for family history by collaborating urologists all over Germany; sporadic cases (n=308): prostatectomy series performed in the Clinic of Urology Ulm between 2012 and 2014. Source of controls: age-matched controls (n=188): age-matched men without prostate cancer and negative family history collected in hospitals of Ulm WUGS/WUPCS: Cases Series, USA. Source of cases: Identified through clinics at Washington University in St. Louis. Source of controls: Men diagnosed and managed with prostate cancer in University based clinic. Acknowledgement Statements: Aarhus: This study was supported by the Danish Strategic Research Council (now Innovation Fund Denmark) and the Danish Cancer Society. The Danish Cancer Biobank (DCB) is acknowledged for biological material. AHS: This work was supported by the Intramural Research Program of the NIH, National Cancer Institute, Division of Cancer Epidemiology and Genetics (Z01CP010119). ATBC: This research was supported in part by the Intramural Research Program of the NIH and the National Cancer Institute. Additionally, this research was supported by U.S. Public Health Service contracts N01-CN-45165, N01-RC-45035, N01-RC-37004, HHSN261201000006C, and HHSN261201500005C from the National Cancer Institute, Department of Health and Human Services. BioVu: The dataset(s) used for the analyses described were obtained from Vanderbilt University Medical Center's BioVU which is supported by institutional funding and by the National Center for Research Resources, Grant UL1 RR024975-01 (which is now at the National Center for Advancing Translational Sciences, Grant 2 UL1 TR000445-06). Canary PASS: PASS was supported by Canary Foundation and the National Cancer Institute's Early Detection Research Network (U01 CA086402) CCI: This work was awarded by Prostate Cancer Canada and is proudly funded by the Movember Foundation - Grant # D2013-36.The CCI group would like to thank David Murray, Razmik Mirzayans, and April Scott for their contribution to this work. CerePP French Prostate Cancer Case-Control Study (ProGene): None reported COH: SLN is partially supported by the Morris and Horowitz Families Endowed Professorship COSM: The Swedish Research Council, the Swedish Cancer Foundation CPCS1 & CPCS2: Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev Ringvej 75, DK-2730 Herlev, DenmarkCPCS1 would like to thank the participants and staff of the Copenhagen General Population Study for their important contributions. CPDR: Uniformed Services University for the Health Sciences HU0001-10-2-0002 (PI: David G. McLeod, MD) CPS-II: The American Cancer Society funds the creation, maintenance, and updating of the Cancer Prevention Study II cohort. CPS-II thanks the participants and Study Management Group for their invaluable contributions to this research. We would also like to acknowledge the contribution to this study from central cancer registries supported through the Centers for Disease Control and Prevention National Program of Cancer Registries, and cancer registries supported by the National Cancer Institute Surveillance Epidemiology and End Results program. EPIC: The coordination of EPIC is financially supported by the European Commission (DG-SANCO) and the International Agency for Research on Cancer. The national cohorts are supported by the Danish Cancer Society (Denmark); the Deutsche Krebshilfe, Deutsches Krebsforschungszentrum and Federal Ministry of Education and Research (Germany); the Hellenic Health Foundation, Greek Ministry of Health; Greek Ministry of Education (Greece); the Italian Association for Research on Cancer (AIRC) and National Research Council (Italy); the Dutch Ministry of Public Health, Welfare and Sports (VWS), Netherlands Cancer Registry (NKR), LK Research Funds, Dutch Prevention Funds, Dutch ZON (Zorg Onderzoek Nederland), World Cancer Research Fund (WCRF); the Statistics Netherlands (The Netherlands); the Health Research Fund (FIS), Regional Governments of Andalucía, Asturias, Basque Country, Murcia and Navarra, Spanish Ministry of Health ISCIII RETIC (RD06/0020), Red de Centros RCESP, C03/09 (Spain); the Swedish Cancer Society, Swedish Scientific Council and Regional Government of Skåne and Västerbotten, Fundacion Federico SA (Sweden); the Cancer Research UK, Medical Research Council (United Kingdom). EPICAP: The EPICAP study was supported by grants from Ligue Nationale Contre le Cancer, Ligue départementale du Val de Marne; Fondation de France; Agence Nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES). The EPICAP study group would like to thank all urologists, Antoinette Anger and Hasina Randrianasolo (study monitors), Anne-Laure Astolfi, Coline Bernard, Oriane Noyer, Marie-Hélène De Campo, Sandrine Margaroline, Louise N'Diaye, and Sabine Perrier-Bonnet (Clinical Research nurses). ERSPC: This study was supported by the DutchCancerSociety (KWF94-869,98-1657,2002-277,2006-3518, 2010-4800), The Netherlands Organisation for Health Research and Development (ZonMW-002822820, 22000106, 50-50110-98-311, 62300035), The Dutch Cancer Research Foundation (SWOP), and an unconditional grant from Beckman-Coulter-HybritechInc. ESTHER: The ESTHER study was supported by a grant from the Baden Württemberg Ministry of Science, Research and Arts. The ESTHER group would like to thank Hartwig Ziegler, Sonja Wolf, Volker Hermann, Heiko Müller, Karina Dieffenbach, Katja Butterbach for valuable contributions to the study. FHCRC: The FHCRC studies were supported by grants R01-CA056678, R01-CA082664, and R01-CA092579 from the US National Cancer Institute, National Institutes of Health, with additional support from the Fred Hutchinson Cancer Research Center. FHCRC would like to thank all the men who participated in these studies. Gene-PARE: The Gene-PARE study was supported by grants 1R01CA134444 from the U.S. National Institutes of Health, PC074201 and W81XWH-15-1-0680 from the Prostate Cancer Research Program of the Department of Defense and RSGT-05-200-01-CCE from the American Cancer Society. Hamburg-Zagreb: None reported HPFS: The Health Professionals Follow-up Study was supported by grants UM1CA167552, CA133891, CA141298, and P01CA055075. HPFS are grateful to the participants and staff of the Physicians' Health Study and Health Professionals Follow-Up Study for their valuable contributions, as well as the following state cancer registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, and WY. IMPACT: The IMPACT study was funded by The Ronald and Rita McAulay Foundation, CR-UK Project grant (C5047/A1232), Cancer Australia, AICR Netherlands A10-0227, Cancer Australia and Cancer Council Tasmania, NIHR, EU Framework 6, Cancer Councils of Victoria and South Australia, and Philanthropic donation to Northshore University Health System. We acknowledge support from the National Institute for Health Research (NIHR) to the Biomedical Research Centre at The Institute of Cancer Research and Royal Marsden Foundation NHS Trust. IMPACT acknowledges the IMPACT study steering committee, collaborating centres, and participants. IPO-Porto: The IPO-Porto study was funded by Fundaçäo para a Ciência e a Tecnologia (FCT; UID/DTP/00776/2013 and PTDC/DTP-PIC/1308/2014) and by IPO-Porto Research Center (CI-IPOP-16-2012 and CI-IPOP-24-2015). MC and MPS are research fellows from Liga Portuguesa Contra o Cancro, Núcleo Regional do Norte. SM is a research fellow from FCT (SFRH/BD/71397/2010). IPO-Porto would like to express our gratitude to all patients and families who have participated in this study. Karuprostate: The Karuprostate study was supported by the the Frech National Health Directorate and by the Association pour la Recherche sur les Tumeurs de la ProstateKarusprostate thanks Séverine Ferdinand. KULEUVEN: F.C. and S.J. are holders of grants from FWO Vlaanderen (G.0684.12N and G.0830.13N), the Belgian federal government (National Cancer Plan KPC_29_023), and a Concerted Research Action of the KU Leuven (GOA/15/017). TVDB is holder of a doctoral fellowship of the FWO. LAAPC: This study was funded by grant R01CA84979 (to S.A. Ingles) from the National Cancer Institute, National Institutes of Health. Malaysia: The study was funded by the University Malaya High Impact Research Grant (HIR/MOHE/MED/35). Malaysia thanks all associates in the Urology Unit, University of Malaya, Cancer Research Initiatives Foundation (CARIF) and the Malaysian Men's Health Initiative (MMHI). MCCS: MCCS cohort recruitment was funded by VicHealth and Cancer Council Victoria. The MCCS was further supported by Australian NHMRC grants 209057, 251553, and 504711, and by infrastructure provided by Cancer Council Victoria. Cases and their vital status were ascertained through the Victorian Cancer Registry (VCR) and the Australian Institute of Health and Welfare (AIHW), including the National Death Index and the Australian Cancer Database. MCC-Spain: The study was partially funded by the Accion Transversal del Cancer, approved on the Spanish Ministry Council on the 11th October 2007, by the Instituto de Salud Carlos III-FEDER (PI08/1770, PI09/00773-Cantabria, PI11/01889-FEDER, PI12/00265, PI12/01270, and PI12/00715), by the Fundación Marqués de Valdecilla (API 10/09), by the Spanish Association Against Cancer (AECC) Scientific Foundation and by the Catalan Government DURSI grant 2009SGR1489. Samples: Biological samples were stored at the Parc de Salut MAR Biobank (MARBiobanc; Barcelona) which is supported by Instituto de Salud Carlos III FEDER (RD09/0076/00036). Also sample collection was supported by the Xarxa de Bancs de Tumors de Catalunya sponsored by Pla Director d'Oncologia de Catalunya (XBTC). MCC-Spain acknowledges the contribution from Esther Gracia-Lavedan in preparing the data. We thank all the subjects who participated in the study and all MCC-Spain collaborators. MD Anderson: Prostate Cancer Case-Control Studies at MD Anderson (MDA) supported by grants CA68578, ES007784, DAMD W81XWH-07-1-0645, and CA140388. MDACC_AS: None reported MEC: Funding provided by NIH grant U19CA148537 and grant U01CA164973. MIAMI (WFPCS): ACS MOFFITT: The Moffitt group was supported by the US National Cancer Institute (R01CA128813, PI: J.Y. Park). NMHS: Funding for the Nashville Men's Health Study (NMHS) was provided by the National Institutes of Health Grant numbers: RO1CA121060. PCaP only data: The North Carolina - Louisiana Prostate Cancer Project (PCaP) is carried out as a collaborative study supported by the Department of Defense contract DAMD 17-03-2-0052. For HCaP-NC follow-up data: The Health Care Access and Prostate Cancer Treatment in North Carolina (HCaP-NC) study is carried out as a collaborative study supported by the American Cancer Society award RSGT-08-008-01-CPHPS. For studies using both PCaP and HCaP-NC follow-up data please use: The North Carolina - Louisiana Prostate Cancer Project (PCaP) and the Health Care Access and Prostate Cancer Treatment in North Carolina (HCaP-NC) study are carried out as collaborative studies supported by the Department of Defense contract DAMD 17-03-2-0052 and the American Cancer Society award RSGT-08-008-01-CPHPS, respectively. For any PCaP data, please include: The authors thank the staff, advisory committees and research subjects participating in the PCaP study for their important contributions. For studies using PCaP DNA/genotyping data, please include: We would like to acknowledge the UNC BioSpecimen Facility and LSUHSC Pathology Lab for our DNA extractions, blood processing, storage and sample disbursement (https://genome.unc.edu/bsp). For studies using PCaP tissue, please include: We would like to acknowledge the RPCI Department of Urology Tissue Microarray and Immunoanalysis Core for our tissue processing, storage and sample disbursement. For studies using HCaP-NC follow-up data, please use: The Health Care Access and Prostate Cancer Treatment in North Carolina (HCaP-NC) study is carried out as a collaborative study supported by the American Cancer Society award RSGT-08-008-01-CPHPS. The authors thank the staff, advisory committees and research subjects participating in the HCaP-NC study for their important contributions. For studies that use both PCaP and HCaP-NC, please use: The authors thank the staff, advisory committees and research subjects participating in the PCaP and HCaP-NC studies for their important contributions. PCMUS: The PCMUS study was supported by the Bulgarian National Science Fund, Ministry of Education and Science (contract DOO-119/2009; DUNK01/2-2009; DFNI-B01/28/2012) with additional support from the Science Fund of Medical University - Sofia (contract 51/2009; 8I/2009; 28/2010). PHS: The Physicians' Health Study was supported by grants CA34944, CA40360, CA097193, HL26490, and HL34595. PHS members are grateful to the participants and staff of the Physicians' Health Study and Health Professionals Follow-Up Study for their valuable contributions, as well as the following state cancer registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, and WY. PLCO: This PLCO study was supported by the Intramural Research Program of the Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIHPLCO thanks Drs. Christine Berg and Philip Prorok, Division of Cancer Prevention at the National Cancer Institute, the screening center investigators and staff of the PLCO Cancer Screening Trial for their contributions to the PLCO Cancer Screening Trial. We thank Mr. Thomas Riley, Mr. Craig Williams, Mr. Matthew Moore, and Ms. Shannon Merkle at Information Management Services, Inc., for their management of the data and Ms. Barbara O'Brien and staff at Westat, Inc. for their contributions to the PLCO Cancer Screening Trial. We also thank the PLCO study participants for their contributions to making this study possible. Poland: None reported PROCAP: PROCAP was supported by the Swedish Cancer Foundation (08-708, 09-0677). PROCAP thanks and acknowledges all of the participants in the PROCAP study. We thank Carin Cavalli-Björkman and Ami Rönnberg Karlsson for their dedicated work in the collection of data. Michael Broms is acknowledged for his skilful work with the databases. KI Biobank is acknowledged for handling the samples and for DNA extraction. We acknowledge The NPCR steering group: Pär Stattin (chair), Anders Widmark, Stefan Karlsson, Magnus Törnblom, Jan Adolfsson, Anna Bill-Axelson, Ove Andrén, David Robinson, Bill Pettersson, Jonas Hugosson, Jan-Erik Damber, Ola Bratt, Göran Ahlgren, Lars Egevad, and Roy Ehrnström. PROGReSS: The PROGReSS study is founded by grants from the Spanish Ministry of Health (INT15/00070; INT16/00154; FIS PI10/00164, FIS PI13/02030; FIS PI16/00046); the Spanish Ministry of Economy and Competitiveness (PTA2014-10228-I), and Fondo Europeo de Desarrollo Regional (FEDER 2007-2013). ProMPT: Founded by CRUK, NIHR, MRC, Cambride Biomedical Research Centre ProtecT: Founded by NIHR. ProtecT and ProMPT would like to acknowledge the support of The University of Cambridge, Cancer Research UK. Cancer Research UK grants (C8197/A10123) and (C8197/A10865) supported the genotyping team. We would also like to acknowledge the support of the National Institute for Health Research which funds the Cambridge Bio-medical Research Centre, Cambridge, UK. We would also like to acknowledge the support of the National Cancer Research Prostate Cancer: Mechanisms of Progression and Treatment (PROMPT) collaborative (grant code G0500966/75466) which has funded tissue and urine collections in Cambridge. We are grateful to staff at the Welcome Trust Clinical Research Facility, Addenbrooke's Clinical Research Centre, Cambridge, UK for their help in conducting the ProtecT study. We also acknowledge the support of the NIHR Cambridge Biomedical Research Centre, the DOH HTA (ProtecT grant), and the NCRI/MRC (ProMPT grant) for help with the bio-repository. The UK Department of Health funded the ProtecT study through the NIHR Health Technology Assessment Programme (projects 96/20/06, 96/20/99). The ProtecT trial and its linked ProMPT and CAP (Comparison Arm for ProtecT) studies are supported by Department of Health, England; Cancer Research UK grant number C522/A8649, Medical Research Council of England grant number G0500966, ID 75466, and The NCRI, UK. The epidemiological data for ProtecT were generated though funding from the Southwest National Health Service Research and Development. DNA extraction in ProtecT was supported by USA Dept of Defense award W81XWH-04-1-0280, Yorkshire Cancer Research and Cancer Research UK. The authors would like to acknowledge the contribution of all members of the ProtecT study research group. The views and opinions expressed therein are those of the authors and do not necessarily reflect those of the Department of Health of England. The bio-repository from ProtecT is supported by the NCRI (ProMPT) Prostate Cancer Collaborative and the Cambridge BMRC grant from NIHR. We thank the National Institute for Health Research, Hutchison Whampoa Limited, the Human Research Tissue Bank (Addenbrooke's Hospital), and Cancer Research UK. PROtEuS: PROtEuS was supported financially through grants from the Canadian Cancer Society (13149, 19500, 19864, 19865) and the Cancer Research Society, in partnership with the Ministère de l'enseignement supérieur, de la recherche, de la science et de la technologie du Québec, and the Fonds de la recherche du Québec - Santé.PROtEuS would like to thank its collaborators and research personnel, and the urologists involved in subjects recruitment. We also wish to acknowledge the special contribution made by Ann Hsing and Anand Chokkalingam to the conception of the genetic component of PROtEuS. QLD: The QLD research is supported by The National Health and Medical Research Council (NHMRC) Australia Project Grants (390130, 1009458) and NHMRC Career Development Fellowship and Cancer Australia PdCCRS funding to J Batra. The QLD team would like to acknowledge and sincerely thank the urologists, pathologists, data managers and patient participants who have generously and altruistically supported the QLD cohort. RAPPER: RAPPER is funded by Cancer Research UK (C1094/A11728; C1094/A18504) and Experimental Cancer Medicine Centre funding (C1467/A7286). The RAPPER group thank Rebecca Elliott for project management. SABOR: The SABOR research is supported by NIH/NCI Early Detection Research Network, grant U01 CA0866402-12. Also supported by the Cancer Center Support Grant to the Cancer Therapy and Research Center from the National Cancer Institute (US) P30 CA054174. SCCS: SCCS is funded by NIH grant R01 CA092447, and SCCS sample preparation was conducted at the Epidemiology Biospecimen Core Lab that is supported in part by the Vanderbilt-Ingram Cancer Center (P30 CA68485). Data on SCCS cancer cases used in this publication were provided by the Alabama Statewide Cancer Registry; Kentucky Cancer Registry, Lexington, KY; Tennessee Department of Health, Office of Cancer Surveillance; Florida Cancer Data System; North Carolina Central Cancer Registry, North Carolina Division of Public Health; Georgia Comprehensive Cancer Registry; Louisiana Tumor Registry; Mississippi Cancer Registry; South Carolina Central Cancer Registry; Virginia Department of Health, Virginia Cancer Registry; Arkansas Department of Health, Cancer Registry, 4815 W. Markham, Little Rock, AR 72205. The Arkansas Central Cancer Registry is fully funded by a grant from National Program of Cancer Registries, Centers for Disease Control and Prevention (CDC). Data on SCCS cancer cases from Mississippi were collected by the Mississippi Cancer Registry which participates in the National Program of Cancer Registries (NPCR) of the Centers for Disease Control and Prevention (CDC). The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of the CDC or the Mississippi Cancer Registry. SCPCS: SCPCS is funded by CDC grant S1135-19/19, and SCPCS sample preparation was conducted at the Epidemiology Biospecimen Core Lab that is supported in part by the Vanderbilt-Ingram Cancer Center (P30 CA68485). SEARCH: SEARCH is funded by a program grant from Cancer Research UK (C490/A10124) and supported by the UK National Institute for Health Research Biomedical Research Centre at the University of Cambridge. SNP_Prostate_Ghent: The study was supported by the National Cancer Plan, financed by the Federal Office of Health and Social Affairs, Belgium. SPAG: Wessex Medical ResearchHope for Guernsey, MUG, HSSD, MSG, Roger Allsopp STHM2: STHM2 was supported by grants from The Strategic Research Programme on Cancer (StratCan), Karolinska Institutet; the Linné Centre for Breast and Prostate Cancer (CRISP, number 70867901), Karolinska Institutet; The Swedish Research Council (number K2010-70X-20430-04-3) and The Swedish Cancer Society (numbers 11-0287 and 11-0624); Stiftelsen Johanna Hagstrand och Sigfrid Linnérs minne; Swedish Council for Working Life and Social Research (FAS), number 2012-0073STHM2 acknowledges the Karolinska University Laboratory, Aleris Medilab, Unilabs and the Regional Prostate Cancer Registry for performing analyses and help to retrieve data. Carin Cavalli-Björkman and Britt-Marie Hune for their enthusiastic work as research nurses. Astrid Björklund for skilful data management. We wish to thank the BBMRI.se biobank facility at Karolinska Institutet for biobank services. PCPT & SELECT are funded by Public Health Service grants U10CA37429 and 5UM1CA182883 from the National Cancer Institute. SWOG and SELECT thank the site investigators and staff and, most importantly, the participants who donated their time to this trial. TAMPERE: The Tampere (Finland) study was supported by the Academy of Finland (251074), The Finnish Cancer Organisations, Sigrid Juselius Foundation, and the Competitive Research Funding of the Tampere University Hospital (X51003). The PSA screening samples were collected by the Finnish part of ERSPC (European Study of Screening for Prostate Cancer). TAMPERE would like to thank Riina Liikanen, Liisa Maeaettaenen and Kirsi Talala for their work on samples and databases. UGANDA: None reported UKGPCS: UKGPCS would also like to thank the following for funding support: The Institute of Cancer Research and The Everyman Campaign, The Prostate Cancer Research Foundation, Prostate Research Campaign UK (now Prostate Action), The Orchid Cancer Appeal, The National Cancer Research Network UK, The National Cancer Research Institute (NCRI) UK. We are grateful for support of NIHR funding to the NIHR Biomedical Research Centre at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust. UKGPCS should also like to acknowledge the NCRN nurses, data managers, and consultants for their work in the UKGPCS study. UKGPCS would like to thank all urologists and other persons involved in the planning, coordination, and data collection of the study. ULM: The Ulm group received funds from the German Cancer Aid (Deutsche Krebshilfe). WUGS/WUPCS: WUGS would like to thank the following for funding support: The Anthony DeNovi Fund, the Donald C. McGraw Foundation, and the St. Louis Men's Group Against Cancer.
Study 1 2R01-NS050375 (PI: DOBYNS, William B.) The genetic basis of mid-hindbrain malformations Our general goal for this project is to advance our understanding of human developmental disorders that involve the brainstem and cerebellum - brain structures derived from the embryonic midbrain and hindbrain - that affect a minimum of 2.4 per 1000 resident births based on data from the CDC. Importantly, this large class of disorders co-occurs with more common developmental disorders such as autism, mental retardation and some forms of infantile epilepsy, and shares some of the same causes. With this renewal, we propose to expand the scope of our work beyond single phenotypes and genes to focus on delineating the critical phenotype spectra to which the most common MHM belong, and defining the underlying biological networks that are disrupted. To pursue these goals, we will use our large and growing cohort of human subjects to map additional MHM loci using SNP microarrays that provide both high-resolution autozygosity and linkage data in informative families as well as detect critical copy number variants in sporadic subjects. The causative genes will be identified using traditional Sanger or new high-throughput sequencing methods as appropriate abased on size of the critical region. We will use these and other known MHM causative genes to construct and revise model biological networks of genes and proteins, and test these genes and networks in additional patients as a candidate gene or more accurately a candidate network approach. These approaches need to be supported by ongoing active subject recruitment, as studies of comparable disorders such as mental retardation and autism have benefited from even larger numbers of subjects that we have so far collected. We need to use new high-throughput sequencing methods to more efficiently test larger critical regions, and to test entire gene networks rather than individual genes in matched cohorts of subjects. At every step; phenotype analysis, CNV analysis, model network construction and high-throughput sequencing, we will need expanded bioinformatics capabilities. Finally, we need to test the biological function of new genes and networks to support our gene identification studies. We expect that these studies will contribute immediately to more accurate diagnosis and counseling, and over time will lead to development of specific treatments for a subset of these disorders. We further expect that studies of mid-hindbrain development will have broad significance for human developmental disorders generally, providing compelling evidence for a connection between cerebellar development and other classes of developmental disorders such as autism, mental retardation and epilepsy. Study 2 R01-NS058721 (PI: DOBYNS, William B.) De novo copy number variation and gene discovery in human brain malformations Project Summary/Abstract The number of recognized brain malformations and syndromes has grown rapidly during the past several decades, yet relatively few causative genes have been identified, especially for three common malformations that have been associated with numerous cytogenetically visible chromosome deletions and duplications, and that often occur together: agenesis of the corpus callosum (ACC), cerebellar vermis hypoplasia (CVH) including Dandy-Walker malformation (DWM), and polymicrogyria (PMG). We propose to perform high-resolution array comparative genome hybridization (aCGH), emerging technology able to detect small copy number variants (CNV), in 700 probands with one or more of these three malformations. Our central hypothesis states that more than 10% of patients with ACC, CVH or PMG will have de novo CNV below the resolution of routine cytogenetic analysis, but detectable by current array platforms. We therefore expect to identify 70-100 patients with small CNV. We will distinguish CNV found in normal individuals from potentially disease-associated changes, and will confirm CNV using fluorescence in situ hybridization (FISH) and microsatellite (STRP) analysis. We will give highest priority to CNV that are de novo and involve 2 or more BACs, and secondary priority to familial and smaller CNV excluding known polymorphisms. After that, we will evaluate and rank candidate genes in the critical regions using information from public databases and our own expression studies, and perform mutation analysis of the best candidate genes from well-defined critical regions by sequencing in a large panel of subjects with phenotypes that match the phenotypes of the patients whose CNV define the critical regions. Here, we will use more refined criteria to supplement our clinical classification, such as the developmental level and presence of epilepsy or other birth defects. Any abnormalities found will be analyzed using existing data regarding polymorphisms (i.e. dbSNP), cross-species comparisons, and functional assays appropriate for the specific sequence change. Study 2A In 1995, we described a novel multiple congenital anomaly syndrome associated with facial dysmorphism (congenital ptosis, high arched eyebrows, shallow orbits, trigonocephaly), colobomas of the eyes, neuronal migration malformation (frontal predominant lissencephaly) and variable hearing loss. We hypothesized from de novo mutations and used trio-based exome sequencing to identify de novo mutations in the ACTB and ACTG1 genes. Study 2B In 1997 and 2004, we and others defined two novel developmental syndromes associated with markedly enlarged brain size, or megalencephaly, and other highly recognizable features. The megalencephaly-capillary malformation syndrome (MCAP) consists of megalencephaly and associated growth dysregulation with variable asymmetry, developmental vascular anomalies, distal limb malformations, variable cortical malformation, and a mild connective tissue dysplasia. The megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome (MPPH) resembles MCAP but lacks vascular malformations and syndactyly. We hypothesized that MCAP and MPPH result from mutations - including postzygotic events - in the same pathway, and studied them together. Using a combination of exome sequencing, Sanger sequencing, restriction-enzyme assays, and targeted ultra-deep sequencing in 50 families with MCAP or MPPH, we identified de novo germline or postzygotic mutations in three core components of the phosphatidylinositol-3-kinase/AKT pathway. These include two mutations in AKT3, a recurrent mutation in PIK3R2, and multiple mostly postzygotic mutations in PIK3CA (Rivière JB, Mirzaa GM, O'Roak BJ, Beddaoui M, Alcantara D, Conway RL, St-Onge J, Schwartzentruber JA, Gripp KW, Nikkel SM, Worthylake T, Sullivan CT, Ward TR, Butler HE, Kramer NA, Albrecht B, Armour CM, Armstrong L, Caluseriu O, Cytrynbaum C, Drolet BA, Innes AM, Lauzon JL, Lin AE, Mancini GMS, Meschino WS, Reggin JD, Saggar AK, Lerman-Sagie T, Uyanik G, Weksberg R, Zirn B, Beaulieu CL, FORGE Canada Consortium, Majewski J, Bulman DE, O'Driscoll M, Shendure J, Graham Jr. JM, Boycott KM, Dobyns WB. De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. Nat. Genet. In press). Study 3 2R01-NS046616 (PI: GOLDEN, Jeffrey A) The role of ARX in normal and abnormal brain development This subcontract from the Children's Hospital of Philadelphia to the University of Chicago (UC) is intended to support research studies of the ARX and functionally related genes in human subjects with any one of several specific developmental disorders. The Co-investigator at UC (W.B. Dobyns) will identify a series of patients with mental retardation and severe infantile epilepsy, some of whom will have specific brain malformations and others who will have normal brain structure by brain imaging studies, and collect research samples from these subjects with informed consent. The studies to be performed will include mutation analysis of ARX, mutation analysis of specific downstream target genes, X inactivation studies in humans and X inactivation studies in mutant mice. The results will be analyzed to determine the significance of any changes found in the gene.
The VISP trial (PI Jim Toole, M.D., Wake Forest University School of Medicine) was a multi-center, double-blind, randomized, controlled clinical trial that enrolled patients aged 35 or older with homocysteine (Hcy) levels above the 25th percentile at screening and a non-disabling cerebral infarction (NDCI) within 120 days of randomization (Toole, 2002, PMID: 12417369). The trial was designed to determine if daily intake of a multivitamin tablet with high dose folic acid, vitamin B6 and vitamin B12 reduced recurrent cerebral infarction (primary endpoint), and nonfatal myocardial infarction (MI) or mortality (secondary endpoints). Subjects were randomly assigned to receive daily doses of the high-dose formulation (n=1,827), containing 25mg pyridoxine (B6), 0.4mg cobalamin (B12), and 2.5mg folic acid; or the low-dose formulation (n=1,853), containing 200mcg pyridoxine, 6mcg cobalamin and 20mcg folic acid. Enrollment in VISP began in August 1997, and was completed in December 2001, with 3,680 participants enrolled. Within the trial, 2,164 participants from 46 clinic sites provided DNA and agreed for it to be shared for use in a genetic subset study of VISP. This study is part of Genomics and Randomized Trials Network (GARNET), funded by the National Human Genome Research Institute (NHGRI). The overarching goal is to identify novel genetic factors that contribute to stroke through large-scale genome-wide association studies of treatment response in randomized clinical trials. Genotyping was performed at the Johns Hopkins University Center for Inherited Disease Research (CIDR). Data cleaning and harmonization were performed at the GARNET Coordinating Center at the University of Washington. The data of the VISP trial have been released to dbGaP users in several segments: Version 1 (phs000343.v1.p1), consisted of n=4 phenotype datasets, and all raw, cleaned and imputed genotype data. Version 2 (phs000343.v2.p1) included n=14 additional phenotype datasets (plus pedigree, consent, and sample-mapping data), and increased the available data to a total of n=970 phenotype variables. Version 3 (phs000343.v3.p1) included all n=36 phenotype datasets (plus pedigree, consent, and sample-mapping data), and increased the available data to a total of n=1918 phenotype variables.Version 4 (phs000343.v4.p1), the current release, includes all previous phenotypic datasets, includes one new phenotypic dataset for the untargeted metabolomics data of 50 individuals, includes DNA methylation profiles for n=180 individuals, and sequencing data for n=179 individuals.
The Mood Methylation Study (MMS) is an observational study designed to understand epigenetic mechanisms underlying major depression symptoms (MDD) using a co-twin control design. Twins enrolled in the MMS were monozygotic (MZ) twin pairs discordant on lifetime history of MDD. All twins were members of the Washington State Twin Registry (WSTR), a community-based twin registry consisting of over 10,000 twin pairs. Lifetime and current MDD diagnoses were determined using the Structured Clinical Interview for DSM-IV Research Version (SCID-4-RV). DNA methylation in blood monocytes was measured using the Infinium HumanMethylationEPIC BeadChip. Monocyte gene expression was quantified by paired end RNA-seq (50 PE). Zygosity of the twin pairs included in the MMS was self-reported and confirmed using the polymorphic SNPs included in the DNA methylation array.