Use the refinements panel to filter the search results by selecting one or more values from the refinement categories.
Tumour heterogeneity in primary prostate cancer is a well-established phenomenon. However, how the subclonal diversity of tumours changes during metastasis and progression to lethality is poorly understood. Here we reveal the precise direction of metastatic spread across four lethal prostate cancer patients using whole-genome and ultra-deep targeted sequencing of longitudinally collected primary and metastatic tumours. We find one case of metastatic spread to the surgical bed causing local recurrence, and another case of cross-metastatic site seeding combining with dynamic remoulding of subclonal mixtures in response to therapy. By ultra-deep sequencing end-stage blood, we detect both metastatic and primary tumour clones, even years after removal of the prostate. Analysis of mutations associated with metastasis reveals an enrichment of TP53 mutations, and additional sequencing of metastases from 19 patients demonstrates that acquisition of TP53 mutations is linked with the expansion of subclones with metastatic potential which we can detect in the blood.
Pancreatic adenocarcinoma has the worst mortality of any solid cancer. To evaluate the clinical implications of genomic alterations in this tumor type, we performed whole-exome analyses of 24 tumors, targeted genomic analyses of 77 tumors, and used non-invasive approaches to examine tumor-specific mutations in the circulation of these patients. These analyses reveal somatic mutations in chromatin regulating genes MLL, MLL2, MLL3, and ARID1A in 20% of patients that were associated with improved survival. We observe alterations in genes with potential clinical utility in over a third of cases. Liquid biopsy analyses demonstrate that 43% of patients with localized disease have detectable circulating tumor DNA (ctDNA) at diagnosis. Detection of ctDNA after resection predicts clinical relapse and poor outcome, and recurrence by ctDNA is detected 6.5 months earlier than with CT imaging. These observations provide genetic predictors of outcome in pancreatic cancer and have implications for new avenues of therapeutic intervention.
The transforming growth factor beta (TGFβ) signalling pathway exerts opposing effects on cancer cells, acting either as a tumor-promoter or as a tumor-suppressor. Here we show these opposing effects are a result of the synergy between SMAD3, a downstream effector of TGFβ signalling, and the distinct epigenomes of breast tumor initiating cells (BTICs). These effects of TGFβ are associated with distinct gene expression programs, but genomic SMAD3 binding patterns are highly similar in the BTIC-promoting and BTIC- suppressing contexts. Our data show cell type-specific epigenetic configurations provide a modulatory layer by determining accessibility of genes to regulation by TGFβ/SMAD3. LBH, one such context-specific target gene, is regulated according to its DNA methylation status, and is crucial for TGFβ-dependent promotion of BTICs. Overall, these results reveal that the epigenome plays a central and previously overlooked role in shaping the context-specific effects of TGFβ in cancer.
Point mutations in cancer have been extensively studied but chromosomal gains and losses have been more challenging to interpret due to their unspecific nature. Here we examine high-resolution allelic imbalance (AI) landscape in 1699 colorectal cancers, 256 of which have been whole genome sequenced (WGSed). The imbalances pinpoint 38 genes as plausible AI targets based on previous knowledge, and unbiased CRISPR-Cas9 knockout and activation screens identified altogether 79 genes within AI peaks regulating cell growth. Genetic and functional data implicates loss of TP53 as a sufficient driver of AI. The WGS highlights an influence of copy number aberrations on the rate of detected somatic point mutations. Importantly, the data reveal several associations between AI target genes, suggesting a role for a network of lineage-determining transcription factors in colorectal tumorigenesis. Overall, the results unravel the contribution of AI in colorectal cancer and provide a plausible explanation why so few genes are commonly affected by point mutations in cancers.
Immunotherapy directed against private tumor neo-antigens derived from non-synonymous somatic mutations is a promising strategy of personalized cancer immunotherapy. However, feasibility in low mutational load tumor types remains unknown. Comprehensive and deep analysis of circulating and tumor-infiltrating lymphocytes (TILs) for neo-epitope specific CD8 + T cells allowed prompt identification of oligoclonal and polyfunctional such cells from most immunotherapy-naïve patients with advanced epithelial ovarian cancer studied. Neo-epitope recognition was discordant between circulating T cells and TILs, and was more likely to be found among TILs, which displayed higher functionalavidity and unique TCRs with higher predicted affinity than their blood counterparts. Our results imply that identification of neo-epitope specific CD8 + T cells is achievable even in tumors with relatively low number of somatic mutations, and neo-epitope validation in TILs extends opportunities for mutanome-based personalized immunotherapies to such tumors.
Testicular germ cell tumor (TGCT) is the most common cancer in young men1,2. Here we aimed to identify novel risk factors for TGCT using whole-exome sequencing, which was performed on 328 affected individuals from 153 families, 634 sporadic cases and 1,644 controls. We searched for genes that were recurrently affected by rare variants (minor allele frequency <0.01) with potentially damaging effects and evidence of segregation in families. 8.7% of families carried rare disruptive mutations in the cilia-microtubule genes (CMG) as compared to 0.5% of controls3 (P=2.1x10-8). The most significantly mutated CMG was DNAAF1 with biallelic inactivation and loss of DNAAF1 expression shown in tumors from carriers. DNAAF1 as a cause of TGCT was supported by a DNAAF1Hu255h(+/-) zebrafish model with 94% penetrance for TGCT compared to 14% in wildtype fish. These data implicate cilia-microtubule inactivation as a cause of TGCT development and are the first evidence for CMGs as cancer susceptibility genes.
On-treatment circulating tumor DNA (ctDNA) quantification is touted as a surrogate biomarker for understanding metastatic cancer response to systemic therapy, but there is relatively little supporting data from standardized patient cohorts. Here, in a prospective observational cohort, we demonstrate that 4-week on-treatment changes in plasma ctDNA levels can accurately identify metastatic castration-resistant prostate cancer that will progress within 6 months of initiating first-line abiraterone or enzalutamide treatment. On-treatment ctDNA measurements outperformed existing clinical variables for predicting disease response and were also closely associated with differential overall survival. Although optimal timing of blood collections and thresholds for ctDNA detection will require further testing, our data highlights the potential for sequential ctDNA measurements to provide an early and reliable read-out for therapy response. The high accuracy of this information suggests that ctDNA could be useful for guiding clinical trials of therapy changes in initially non-responsive metastatic cancers.
In colorectal cancers (CRC) the tumor microenvironment plays a key role for prognosis and therapy efficacy. Patient-derived tumor organoids (PDTOs) show enormous potential for preclinical testing, however, in purely epithelial cultures features including the ‘consensus molecular subtypes’ (CMS) are largely eradicated. To better reflect cell heterogeneity, we established the CRC organoid-stroma biobank of matched PDTOs and cancer-associated fibroblasts (CAFs) from 30 patients. Context-specific phenotyping showed that xenotransplantation or co-culture with CAFs restores the individual transcriptomic status and instructs subtype-specific stromal gene expression. Furthermore, co-culture exposed CMS4-specific resistance to Gefitinib and SN-38 and revealed prognostic gene expression signatures. Chemogenomic library screening identified patient- and therapy-dependent mechanisms of stromal resistance including MET as common target. Our results demonstrate that CRC phenotypes are encrypted in the cancer epithelium in a plastic fashion that strongly depends on the context. Consequently, CAFs are essential for faithful representation of molecular subtypes and therapy responses ex vivo.
Close proximity between cytotoxic T lymphocytes and tumour cells is required for effective immunotherapy. However, what determines the spatial distribution of T cells in the tumour microenvironment is not well understood. Coupling digital pathology and transcriptome analysis on a large ovarian tumour cohort, we develop a machine learning approach to molecularly classify and characterize tumour-immune phenotypes. Our study identifies two important hallmarks characterizing T cell excluded tumours: 1) loss of antigen presentation on tumour cells and 2) upregulation of TGFb and activated stroma. Furthermore, we identify TGFb as a key mediator of T cell exclusion. TGFb reduces MHC-I expression in ovarian cancer cells in vitro; TGFb also activates fibroblasts and induced extracellular matrix (ECM) production as a potential physical barrier to hinder T cell infiltration. Our findings indicate that targeting TGFb may represent a promising strategy to overcome T cell exclusion and improve clinical benefits of cancer immunotherapy.
In metastatic urothelial cancer (mUC), cisplatin versus carboplatin leads to durable disease control in a subset of patients. The IMvigor130 trial reveals more favorable effects with atezolizumab combined with gemcitabine and cisplatin (GemCis) versus gemcitabine and carboplatin (GemCarbo). This study investigates the immunomodulatory effects of cisplatin as a potential explanation for these observations. Our findings indicate that improved outcomes with GemCis versus GemCarbo are primarily observed in patients with pretreatment tumors exhibiting features of restrained adaptive immunity. Additionally, GemCis versus GemCarbo ± atezolizumab induces transcriptional changes in circulating immune cells, including upregulation of antigen presentation and T-cell activation programs. In vitro experiments demonstrate that cisplatin, compared with carboplatin, exerts direct immunomodulatory effects on cancer cells, promoting dendritic cell activation and antigen-specific T cell killing. These results underscore the key role of immune modulation in cisplatin's efficacy in mUC and highlight the importance of specific chemotherapy backbones in immunotherapy combination regimens.
Molecularly-targeted therapies for advanced prostate cancer include castration modalities that suppress ligand-dependent transcriptional activity of the androgen receptor (AR). However, persistent AR signaling undermines therapeutic efficacy and promotes progression to lethal castration-resistant prostate cancer (CRPC), even when patients are treated with potent second-generation AR-targeted therapies abiraterone and enzalutamide. Here we define diverse AR genomic structural rearrangements (AR-GSRs) as a class of molecular alterations occurring in one third of CRPC-stage tumors. AR-GSRs occur in the context of copy-neutral and amplified AR and display heterogeneity in breakpoint location, rearrangement class, and sub-clonal enrichment in tumors within and between patients. Despite this heterogeneity, one common outcome in tumors with high sub-clonal enrichment of AR-GSRs is outlier expression of diverse AR variant species lacking the ligand binding domain and possessing ligand-independent transcriptional activity. Collectively, these findings reveal AR-GSRs as important drivers of persistent AR signaling in CRPC.
Lung cancer is frequently treated with paclitaxel in combination with several other agents; however, paclitaxel treatment is often ineffective or limited by treatment-related toxicities. Heritable variants in genes associated with absorption, distribution, metabolism, and elimination may predict paclitaxel clinical outcome and toxicity. We designed a prospective multi-institutional study that recruited 546 patients receiving therapy with a 5-year follow up. All patients were genotyped using the Drug Metabolizing Enzymes and Transporters (DMET) platform, which ascertains 1931 genotypes in 235 genes. Genotypes were compared to the progression-free survival of paclitaxel therapy and clinically-significant paclitaxel toxicities. Seven genetic variants were associated with paclitaxel PFS (in ABCB11, ABCC3, ABCG1, CYP8B1, NR3C1, FMO6P, and GSTM3), whereas four genetic variants (in VKORC1, SLC22A14, GSTA2, and DCK) were associated with paclitaxel toxicities. The present SNPs have limited clinical utility but suggest that certain genes are related to important paclitaxel pathways in lung cancer.
Lung cancer in East Asia is characterized by high percentage of never-smokers, early-onset and predominant EGFR mutations. To provide an insight into the molecular phenotype of this demographically distinct disease, we have performed a proteogenomics study on a prospectively collected cohort representing early stage lung adenocarcinomas in Taiwan. The distinct mutational profile revealed high prevalence of the APOBEC mutational signature in early-onset females implicating differential regulation of APOBEC enzymes and DNA damage pathways, as well as enrichment of mutational signatures congruent with environmental carcinogens over-represented in the genomic location of EGFR. We delineate the proteogenomic hallmarks of tumor progression and propose a proteomics-informed classification that resolves the EGFR mutation heterogeneity associated with survival within the early stages. Functional annotation of the molecular subtypes by protein network analysis highlights candidate biomarkers for patient stratification. Our integrative analysis reveals the molecular architecture of lung cancer in East Asia and enables the path for precision medicine.
Formation of metastases is the major cause of cancer related deaths. Recent studies have sequenced primary endometrial carcinomas yielding data for a single entity in the progression from the birth of a progenitor tumor cell to metastatic disease. However, the progression of these tumors to metastases has not been characterized. We performed whole-exome sequencing of 98 tumor biopsies including complex atypical hyperplasias, primary tumors and paired abdominopelvic metastases to survey the evolutionary landscape of endometrial cancer. We expanded and reanalyzed TCGA-data, identifying novel recurrent alterations in primary tumors, including mutations in the estrogen receptor cofactor NRIP1 in 12% of patients. We found that likely driver events tended to be shared by primary and metastatic tissue-samples, with notable exceptions such as ARID1A mutations. Phylogenetic analyses in cases with multiple metastases indicated these metastases typically arose from one lineage of the primary tumor. These data indicate extensive genetic heterogeneity within endometrial cancers and relative homogeneity across metastatic sites.
Lung-MAP (S1400, NCT02785952) was a multicenter, open-label, phase III randomized clinical trial. The Lung-MAP-I substudy (S1400I) was conducted from December 2015 to April 2018, through the National Clinical Trials Network and led by the SWOG Cancer Research Network. The trial compared nivolumab plus ipilimumab (nivo+ipi) with nivolumab monotherapy (nivo) in patients with chemotherapy-pretreated, immunotherapy-naïve, advanced squamous non-small cell lung carcinoma (sqNSCLC). Two hundred fifty-two patients were randomly assigned to receive nivo+ipi (n = 125) or nivo (n = 127). The clinical efficacy endpoints were overall survival, progression free survival, duration of response, and best objective response by RECIST 1.1. Multi-omic translational analysis was performed in collaboration with the the CIMAC–Cancer Immunologic Data Commons (CIDC) Network using available tumor tissue samples and blood samples (n = 160) submitted for Lung-MAP screening and provided by the SWOG tissue bank.
HPV16 is the most oncogenic type of human papillomaviruses (HPV). Integration of HPV into the human genome is an important mechanism of carcinogenesis but is absent in at least 30% of HPV16+ tumors. We applied long-read whole-genome sequencing (WGS) to cervical cancer cell lines and tumors to characterize HPV16 carcinogenesis in the absence of integration. WGS of HPV16+ cervical tumor samples from Latin America revealed that 11/20 tumors with only episomal HPV (EP) had intact monomer episomes. The remaining 9 EP tumors had multimer and rearranged HPV genomes. The majority (80%) of the HPV rearrangements and deletions disrupted the E1 and E2 genes, and EP tumors overexpressed the E6 and E7 viral oncogenes, a similar profile to tumors with HPV integration. Tumors with putative multimer HPV integrations display HPV multimers and concatemers of human and viral sequences. Our data uncovered a novel mechanism for HPV16 to cause cancer without integration through aberrant episomal replication, and forming rearranged, mutated, and multimer episomes.
A subset of castration resistant prostate cancers develop small cell neuroendocrine prostate cancer (NEPC) as a mechanism of treatment resistance. Metastatic tissue biopsies to evaluate for NEPC transformation are invasive and challenging to perform serially. We performed whole exome and whole genome bisulfite sequencing of plasma cfDNA and matched tumor biopsy samples from 62 patients with metastatic prostate cancer along the disease spectrum to evaluate for NEPC associated genomic and epigenomic features. Multiple tissue biopsies and/or plasma time points were included for a subset of patients to characterize disease heterogeneity and dynamic changes. Computational analysis of clonality and allele specific quantification allowed for detailed comparison of matched tumor tissue and cfDNA data (CLONET v2). Methylation profiles detected from tissue and plasma data were compared and NEPC specific alterations were evaluated in cfDNA. The study supports the feasibility of a plasma based assay for the detection of NEPC.
The telomeric amplicon at 8p12 is common in oestrogen receptor-positive (ER+) breast cancers. Array-CGH and expression analyses of 1172 primary breast tumours revealed that ZNF703 was the single gene within the minimal amplicon and was amplified predominantly in the Luminal B subtype. Amplification was shown to correlate with increased gene and protein expression and was associated with a distinct expression signature and poor clinical outcome. ZNF703 transformed NIH 3T3 fibroblasts, behaving as a classical oncogene, and regulated proliferation in human luminal breast cancer cell lines and immortalized human mammary epithelial cells. Manipulation of ZNF703 expression in the luminal MCF7 cell line modified the effects of TGFβ on proliferation. Overexpression of ZNF703 in normal human breast epithelial cells enhanced the frequency of in vitro colony-forming cells from luminal progenitors. Taken together, these data strongly point to ZNF703 as a novel oncogene in Luminal B breast cancer.
In many areas of oncology, we lack sensitive tools to track low burden disease. While cell-free DNA (cfDNA) shows promise in detecting cancer mutations, we found that the combination of low tumor fraction (TF) and limited number of DNA fragments restricts low disease burden monitoring through the prevailing deep targeted sequencing paradigm. We reasoned that breadth may supplant depth of sequencing to overcome the barrier of cfDNA abundance. Whole genome sequencing (WGS) of cfDNA allowed ultra-sensitive detection, capitalizing on the cumulative signal of thousands of somatic mutations observed in solid malignancies, with TF detection sensitivity as low as 10-5. The WGS approach enabled dynamic tumor burden tracking and post-operative residual disease detection, associated with adverse outcome. Thus, we present an orthogonal framework for cfDNA cancer monitoring via genome wide mutational integration, enabling ultra-sensitive detection, overcoming the limitation of cfDNA abundance, and empowering treatment optimization in low-disease burden oncology care
Breast Cancer (BC) comprises multiple distinct subtypes that differ genetically, pathologically, and clinically. Xeno-transplantation and direct culturing of tumor tissue are increasingly used in drug development and personalized medicine strategies. Here, we describe a robust protocol for long-term culturing of human mammary epithelial organoids. Using this protocol, 101 BC organoid lines were generated, broadly recapitulating the diversity of the disease. BC organoid morphologies typically matched the histopathology, hormone receptor-, and HER2 status of the original tumor. DNA copy number variations as well as sequence changes were consistent within tumor-organoid pairs and largely retained even after extended passaging. BC organoids furthermore populated all major gene expression-based classification groups and allowed drug screens in vitro and upon xenotransplantation. This study describes a representative collection of well-characterized BC organoids available for cancer research and drug development, as well as a strategy to assess in vitro drug response in a personalized fashion.
Mismatch repair deficient colorectal cancers have high mutation loads and many respond to immune checkpoint-inhibitors. We investigated how genetic and immune landscapes co-evolve in these tumors. All cases had high truncal mutation loads. Driver aberrations showed a clear hierarchy despite pervasive intratumor heterogeneity: Those in WNT/βCatenin, mitogen-activated protein kinase and TGFβ receptor family genes were almost always truncal. Immune evasion drivers were predominantly subclonal and showed parallel evolution. Pan-tumor evolution, subclonal evolution, and evolutionary stasis of genetic immune evasion drivers defined three MMRd CRC subtypes with distinct T-cell infiltrates. These immune evasion drivers have been implicated in checkpoint-inhibitor resistance. Clonality and subtype assessments are hence critical for predictive immunotherapy biomarker development. Cancer cell PD-L1 expression was conditional on loss of the intestinal homeobox transcription factor CDX2. This explains infrequent PD-L1 expression by cancer cells and likely contributes to the high recurrence risk of MMRd CRCs with impaired CDX2 expression.
The Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO) is a collaborative effort comprised of a coordinating center and scientific researchers from well-characterized cohort and case-control studies conducted in North America and Europe. This international consortium aims to accelerate the discovery of common and rare genetic risk variants for colorectal cancer by conducting large-scale meta-analyses of existing and newly generated genome-wide association study (GWAS) data, replicating and fine-mapping of GWAS discoveries, and investigating how genetic risk variants are modified by environmental risk factors. To expand these efforts, we assembled case-control sets or nested case-control sets from 20 different North American or European studies. Summary descriptions and study participant inclusions/exclusion criteria for each of these studies are detailed below. The Black Women's Health Study (BWHS): Is the largest follow-up study of the health of African-American women (Cozier et al., 2004; Rosenberg et al., 1995) [PMID: 15018884; PMID: 7722208]. The purpose is to identify and evaluate causes and preventives of cancers and other serious illnesses in African-American women. Among the diseases being studied are breast cancer, colorectal cancer, type 2 diabetes, uterine fibroids, systemic lupus erythematosus, and cardiovascular disease. The study began in 1995, when 59,000 black women from all parts of the United States enrolled through postal questionnaires. The women provided demographic and health data on the 1995 baseline questionnaire, including information on weight, height, smoking, drinking, contraceptive use, use of other selected medications, illnesses, reproductive history, physical activity, diet, use of health care, and other factors. The participants are followed through biennial questionnaires to determine the occurrence of cancers and other illnesses and to update information on risk factors. Self-reports of cancer are confirmed through medical records and state cancer registry records. Mouthwash-swish samples, as a source of DNA, were obtained from ~26,000 BWHS participants in 2002-2007. DNA was isolated from the mouthwash-swish samples at the Boston University Molecular Core Genetics Laboratory using the QIAAMP DNA Mini Kit (Qiagen). All incident colorectal cancer cases with a DNA sample were included in the present analysis. Two controls per case, selected from among BWHS participants free of colorectal cancer at end of follow-up, were matched to cases on year of birth (+/- 2 years) and geographical region of residence (Northeast, South, Midwest, and West). A total 209 colorectal cancer cases and 423 controls were sent for genotyping. Campaign Against Cancer and Heart Disease (CLUE II): The Campaign Against Cancer and Heart Disease, is a prospective cohort designed to identify biomarkers and other factors associated with risk of cancer, heart disease, and other conditions (Kakourou et al., 2015) [PMID: 26220152]. 32,894 participants were recruited from May through October 1989 from Washington County, Maryland and surrounding communities. Colorectal cancer cases (n = 297) and matched controls (n = 296) were identified between 1989 and 2000 among participants in the CLUE II cohort of Washington County, Maryland. Colorectal Cancer Study of Austria (CORSA): In the ongoing colorectal cancer study of Austria (CORSA), more than 13,000 Caucasian participants have been recruited within the province-wide screening project "Burgenland Prevention Trial of Colorectal Disease with Immunological Testing" (B-PREDICT) since 2003 (Hofer et al., 2011) [PMID: 21422235]. All inhabitants of the Austrian province Burgenland aged between 40 and 80 years are annually invited to participate in fecal immunochemical testing and haemoccult positive screening participants are invited for colonoscopy. CORSA includes genomic DNA and plasma of colorectal cancer cases, low-risk and high-risk adenomas, and colonoscopy-negative controls. Controls received a complete colonoscopy and were free of colorectal cancer or polyps. CORSA participants have been recruited in the four KRAGES hospitals in Burgenland, Austria, and additionally, at the Medical University of Vienna (Department of Surgery), the Viennese hospitals "Rudolfstiftung" and the "Sozialmedizinisches Zentrum Sud", and at the Medical University of Graz (Department of Internal Medicine). 1403 colorectal cancer and advanced colorectal adenoma cases, and 1404 matched controls were selected for the study. Distribution of factors sex and age (5 year strata) were evenly matched between cases and controls. Cancer Prevention Study II (CPS II): The CPS II Nutrition cohort is a prospective study of cancer incidence and mortality in the United States, established in 1992 and described in detail elsewhere (Calle et al., 2002; Campbell et al., 2014) [PMID: 12015775; PMID: 25472679]. At enrollment, participants completed a mailed self-administered questionnaire including information on demographic, medical, diet, and lifestyle factors. Follow-up questionnaires to update exposure information and to ascertain newly diagnosed cancers were sent biennially starting in 1997. Reported cancers were verified through medical records, state cancer registry linkage, or death certificates. The Emory University Institutional Review Board approves all aspects of the CPS II Nutrition Cohort. A total of 360 cases and 359 controls were selected for this study. Czech Republic Colorectal Cancer Study (Czech Republic CCS): Cases with positive colonoscopy results for malignancy, confirmed by histology as colon or rectal carcinomas, were recruited between September 2003 and May 2012 in several oncological departments in the Czech Republic (Prague, Pilsen, Benesov, Brno, Liberec, Ples, Pribram, Usti and Labem, and Zlin). Two control groups, sampled at the same time of cases recruitment, were included in the study. The first group consisted of hospital-based individuals with a negative colonoscopy result for malignancy or idiopathic bowel diseases. The reasons for the colonoscopy were: i) positive fecal occult blood test, ii) hemorrhoids, iii) abdominal pain of unknown origin, and iv) macroscopic bleeding. The second control group consisted of healthy blood donor volunteers from a blood donor center in Prague. All individuals were subjected to standard examinations to verify the health status for blood donation and were cancer-free at the time of the sampling. Details of CRC cases and controls have been reported previously (Vymetalkova et al., 2014; Naccarati et al., 2016; Vymetalkova et al., 2016) [PMID: 24755277; PMID: 26735576; PMID: 27803053]. All subjects were informed and provided written consent to participate in the study. They approved the use of their biological samples for genetic analyses, according to the Declaration of Helsinki. The design of the study was approved by the Ethics Committee of the Institute of Experimental Medicine, Prague, Czech Republic. All subjects included in the study were Caucasians and comprised 1792 cases and 1764 matched controls. Controls were matched to CRC cases as 1:1 ratio. Matching was done on age and sex. Age was matched on +-5 years, whereas sex was matched exactly. For the cases without matched controls, matching was done only on sex. Early Detection Research Network (EDRN): The aim of the EDRN initiative is to develop and sustain a biorepository for support of translational research (Amin et al., 2010) [PMID: 21031013]. High-quality biospecimens were accrued and annotated with pertinent clinical, epidemiologic, molecular and genomic information. A user-friendly annotation tool and query tool was developed for this purpose. The various components of this annotation tool include: CDEs are developed from the College of American Pathologists (CAP) Cancer Checklists and North American Association of Central Cancer Registries (NAACR) standards. The CDEs provides semantic and syntactic interoperability of the data sets by describing them in the form of metadata or data descriptor. A total of 352 colorectal case samples and 399 controls were selected for this study. Controls were matched to CRC cases based on age and sex. The EPICOLON Consortium (EPICOLON): The EPICOLON Consortium comprises a prospective, multicentre and population-based epidemiology survey of the incidence and features of CRC in the Spanish population (Fernandez-Rozadilla et al., 2013) [PMID: 23350875]. Cases were selected as patients with de novo histologically confirmed diagnosis of colorectal adenocarcinoma. Patients with familial adenomatous polyposis, Lynch syndrome or inflammatory bowel disease-related CRC, and cases where patients or family refused to participate in the study were excluded. Hospital-based controls were recruited through the blood collection unit of each hospital, together with cases. All of the controls were confirmed to have no history of cancer or other neoplasm and no reported family history of CRC. Controls were randomly selected and matched with cases for hospital, sex and age (+- 5 years). A total of 370 cases and 370 controls were selected for genotyping. Hawaii Adenoma Study: For this adenoma study, two flexible-sigmoidoscopy screening clinics were first used to recruit participants on Oahu, Hawaii. Adenoma cases were identified either from the baseline examination at the Hawaii site of the Prostate Lung Colorectal and Ovarian cancer screening trial during 1996-2000 or at the Kaiser Permanente Hawaii's Gastroenterology Screening Clinic during 1995-2007. In addition, starting in 2002 and up to 2007, we also approached for recruitment all eligible patients who underwent a colonoscopy in the Kaiser Permanente Hawaii Gastroenterology Department. Cases were patients with histologically confirmed first-time adenoma(s) of the colorectum and were of Japanese, Caucasian or Hawaiian race/ethnicity. Controls were selected among patients with a normal colorectum and were individually matched to the cases on age at exam, sex, race/ethnicity, screening date (+-3 months) and clinic and type of examination (colonoscopy or flexible sigmoidoscopy). We recruited 1016 adenoma cases (67.8% of all eligible) and 1355 controls (69.2% of all eligible); 889 cases and 1169 controls agreed to give a blood and 29 cases and 34 controls, a mouthwash sample. A total of 989 cases and 1185 controls were genotyped for this study. Columbus-area HNPCC Study (HNPCC, OSUMC): Patients with colorectal adenocarcinoma diagnosed at six participating hospitals were eligible for this study, regardless of age at diagnosis or family history of cancer. Patients with a clinical diagnosis of familial adenomatous polyposis were not eligible for this study. These six hospitals perform the vast majority of all operations for CRC in the Columbus metropolitan area (population 1.7 million). The institutional review board at all participating hospitals approved the research protocol and consent form in accordance with assurances filed with and approved by the United States Department of Health and Human Services. Briefly, during the period of January 1999 through August 2004, 1,566 eligible patients with CRC were accrued to the study (Hampel et al., 2008) [PMID 18809606]. A total of 1472 colorectal cancer samples had enough blood DNA remaining to be sent for genotyping. Control samples were provided by the Ohio State University Medical Center%#39;s (OSUMC) Human Genetics Sample Bank. The Columbus Area Controls Sample Bank is a collection of control samples for use in human genetics research that includes both donors' anonymized biological specimens and linked phenotypic data. The data and samples are collected under the protocol "Collection and Storage of Controls for Genetics Research Studies", which is approved by the Biomedical Sciences Institutional Review Board at OSUMC. Recruitment takes place in OSUMC primary care and internal medicine clinics. If individuals agree to participate, they provide written informed consent, complete a questionnaire that includes demographic, medical and family history information, and donate a blood sample. 4-7 ml of blood is drawn into each of 3 ACD Solution A tubes and is used for genomic DNA extraction and the establishment of an EBV-transformed lymphoblastoid cell culture, cell pellet in Trizol, and plasma. Controls were matched to CRC cases as 1:1. Matching was done on age at reference time (age_ref), race, and sex. Age_ref was matched on +-5 years. Sex and race were matched exactly. For the cases without matched controls, matching was done only on sex and race with 1:1 ratio. Since controls are fewer than cases, one control is matched on 2 cases at most. Health Professionals Follow-up Study (HPFS): A parallel prospective study to the NHS (Nurses' Health Study). The HPFS cohort comprised 51,529 men aged 40-75 who, in 1986, responded to a mailed questionnaire (Rimm et al., 1990) [PMID: 2090285]. Participants provided information on health related exposures, including current and past smoking history, age, weight, height, diet, physical activity, aspirin use, and family history of colorectal cancer. Colorectal cancer and other outcomes were reported by participants or next-of-kin and were followed up through review of the medical and pathology record by physicians. Overall, more than 97% of self-reported colorectal cancers were confirmed by medical record review. Information was abstracted on histology and primary location. Incident cases were defined as those occurring after the subject provided the blood sample. Prevalent cases were defined as those occurring after enrollment in the study but before the subject provided the blood sample. Follow-up evaluation has been excellent, with 94% of the men responding to date. Colorectal cancer cases were ascertained through January 1, 2008. In 1993-1995, 18,825 men in the HPFS mailed blood samples by overnight courier, which were aliquoted into buffy coat and stored in liquid nitrogen. In 2001-2004, 13,956 men in the HPFS who had not provided a blood sample previously mailed in a swish-and-spit sample of buccal cells. Incident cases were defined as those occurring after the subject provided a blood or buccal sample. Prevalent cases were defined as those occurring after enrollment in the study in 1986, but before the subject provided either a blood or buccal sample. After excluding participants with histories of cancer (except nonmelanoma skin cancer), ulcerative colitis, or familial polyposis, case-control sets were previously constructed. In addition to colorectal cancer cases and controls, a set of adenoma cases and matched controls with available DNA from buffy coat were selected for genotyping. Over the follow-up period, data were collected on endoscopic screening practices and, if individuals had been diagnosed with a polyp, the polyps were confirmed to be adenomatous by medical record review. Adenoma cases were ascertained through January 1, 2008. A separate case-control set was constructed of participants diagnosed with advanced adenoma matched to control participants who underwent a lower endoscopy in the same time period and did not have an adenoma. Advanced adenoma was defined as an adenoma 1 cm or larger in diameter and/or with tubulovillous, villous, or highgrade dysplasia/carcinoma-in-situ histology. Matching criteria included year of birth (within 1 year) and month/ year of blood sampling (within 6 months), the reason for their lower endoscopy (screening, family history, or symptoms), and the time period of any prior endoscopy (within 2 years). Controls matched to cases with a distal adenoma either had a negative sigmoidoscopy or colonoscopy examination, and controls matched to cases with proximal adenoma all had a negative colonoscopy. In total, 159 advanced adenoma cases and 109 controls were selected for genotyping. Leeds Colorectal Cancer Study (LCCS): Following local ethical approval, colorectal cancer cases were recruited from 1997 until 2012 in Leeds, UK through surgical clinics. Initially, funding was provided by the UK Ministry of Agriculture, Farming and Fisheries (subsequently the Food Standards Agency) and Imperial Cancer Research Fund (subsequently Cancer Research UK). Recruitment also occurred similarly in Dundee, Perth and York between the periods of 1997 and 2001 using the same protocol and the data and samples were combined. Pathologically confirmed cases were consented at outpatient clinics, providing information on known and postulated risk factors for colorectal cancer (diet, lifestyle and family history) as well as providing a blood sample for DNA. Exclusion criteria included pre-existing diverticular disease and an inability to complete the questionnaire. The General Practitioners of cases (all UK residents have a nominated General Practitioner to whom to refer initial medical queries) and these GPs were asked to send letters to other persons on their patient list of the same gender and born within 5 years of the case. Subsequently to enhance the number of controls, we systematically invited patients from selected GP practices. Diet was assessed in cases and controls using an extensive dietary and lifestyle questionnaire modified by that produced by the European Prospective Investigation in Cancer (EPIC). The frequency that each specific food items were eaten was recorded and we also obtained average fruit and vegetable consumption as a cross-check. In total, 1591 cases and 739 controls provided a DNA sample. The North Carolina Colon Cancer Studies (NCCCS I/II): The North Carolina Colon Cancer Studies (NCCCS I- colon and NCCCS II-rectal) were population-based case-control studies conducted in 33 counties of North Carolina. Cases were identified using the rapid case ascertainment system of the North Carolina Central Cancer Registry. Patients with a first diagnosis of histologically confirmed invasive adenocarcinoma of the colon (cecum through sigmoid colon) between October 1996 and September 2000 were classified as potential cases in the NCCCS I. The NCCCS II included patients with a first diagnosis of histologically confirmed invasive adenocarcinoma of the sigmoid colon, rectosigmoid, or rectum (hereafter collectively referred to as rectal cancer) between May 2001 and September 2006. Additional eligibility requirements were: aged 40-80 years, residence in one of the 33 counties, ability to give informed consent and complete an interview, had a driver's license or identification card issued by the North Carolina Department of Motor Vehicles (if under the age of 65), and had no objections from the primary physician in regards to contacting the individual. Controls, identified and sampled during the respective study dates, were selected from two sources. Potential controls under the age of 65 were identified using the North Carolina Department of Motor Vehicles records. For those 65 years and older, records from the Center for Medicare and Medicaid Services were used. Controls were matched to cases using randomized recruitment strategies. Recruitment probabilities were done using strata of 5-year age, sex, and race groups. Dietary information was collected using a modified version of the semiquantitative food frequency questionnaire developed at the National Cancer Institute. In addition, participants were asked about vitamin and mineral supplementation, special diets, restaurant eating, sodium use, and fats used in cooking. In NCCCS I, 515 colorectal cases and 687 matched controls were sent for genotyping. In NCCCS II, 796 colorectal cases and 823 controls were sent from the NCCCS II for genotyping. Controls were matched to CRC cases as 1:1 ratio. Matching was done on age, race, and sex. Age was matched on +-5 years. Race and sex was matched exactly. For the cases without matched controls, matching was done only on sex and race. Nurses Health Study (NHS): The NHS cohort began in 1976 when 121,700 married female registered nurses age 30-55 years returned the initial questionnaire that ascertained a variety of important health-related exposures (Belanger et al., 1978) [PMID: 248266]. Since 1976, follow-up questionnaires have been mailed every 2 years. Colorectal cancer and other outcomes were reported by participants or next-of-kin and followed up through review of the medical and pathology record by physicians. Overall, more than 97% of self-reported colorectal cancers were confirmed by medical-record review. Information was abstracted on histology and primary location. The rate of follow-up evaluation has been high: as a proportion of the total possible follow-up time, follow-up evaluation has been more than 92%. Colorectal cancer cases were ascertained through June 1, 2008. In 1989 -1990, 32,826 women in NHS I mailed blood samples by overnight courier, which were aliquoted into buffy coat and stored in liquid nitrogen. In 2001-2004, 29,684 women in NHS I who did not previously provide a blood sample mailed a swish-and-spit sample of buccal cells. Incident cases were defined as those occurring after the subject provided a blood or buccal sample. Prevalent cases were defined as those occurring after enrollment in the study in 1976 but before the subject provided either a blood or buccal sample. After excluding participants with histories of cancer (except nonmelanoma skin cancer), ulcerative colitis, or familial polyposis, case-control sets were previously constructed from which DNA was isolated from either buffy coat or buccal cells for genotyping. In addition to colorectal cancer cases and controls, a set of advanced adenoma cases and matched controls with available DNA from buffy coat were selected for genotyping. Over the follow-up period, data were collected on endoscopic screening practices and, if individuals had been diagnosed with a polyp, the polyps were confirmed to be adenomatous by medical record review. Adenoma cases were ascertained through June 1, 2011. A separate case-control set was constructed of participants diagnosed with advanced adenoma matched to control participants who underwent a lower endoscopy in the same time period and did not have an adenoma. Advanced adenoma was defined as an adenoma more than 1 cm in diameter and/or with tubulovillous, villous, or high-grade dysplasia/carcinoma-in-situ histology. Matching criteria included year of birth (within 1 year) and month/year of blood sampling (within 6 months), the reason for their lower endoscopy (screening, family history, or symptoms), and the time period of any prior endoscopy (within 2 years). Controls matched to cases with a distal adenoma either had a negative sigmoidoscopy or colonoscopy examination, and controls matched to cases with proximal adenoma all had a negative colonoscopy. A total of 272 cases and 236 matched controls were sent to CIDR for the advanced adenoma case-control set. Northern Swedish Health and Disease Study (NSHDS): Comprises over 110,000 participants, including approximately one third with repeated sampling occasions, from three population-based cohorts (Dahlin et al., 2010; Myte et al., 2016) [PMID: 20197478; PMID: 27367522]. The largest is the ongoing Vasterbotten Intervention Programme, in which all residents of Vasterbotten County are invited to a health examination upon turning 30 (some years), 40, 50 and 60 years of age. Extensive measured and self-reported health and lifestyle data, as well as blood samples for central biobanking in Umea, Sweden, are collected at the health exam. Leucocyte DNA samples for 1:1-matched CRC case-control sets from the NSHDS, of which 878 samples are included in this study, have been selected for genotyping. This is in addition to 354 samples from the NSHDS previously analyzed as part of the multicenter EPIC cohort. Cancer-specific and overall survival data are available for all patients. For at least 425 patients, archival tumor tissue has been analyzed for the BRAF V600E mutation and by sequencing codon 12 and 13 for KRAS mutations, as well as for MSI screening status by immunohistochemistry and for an eight-gene CIMP panel using quantitative real-time PCR (MethyLight). Ohio Colorectal Cancer Prevention Initiative (OCCPI, OSUMC): OCCPI (ClinicalTrials.gov identifier: NCT01850654) is a population-based study of colorectal cancer patients diagnosed in one of 51 hospitals throughout the state of Ohio from January 1, 2013 through December 31, 2016. The OCCPI was created to decrease CRC incidence in Ohio by identifying patients with hereditary predisposition (statewide universal tumor screening for newly diagnosed CRC patients), increase colonoscopy compliance for first-degree relatives of CRC patients, and encourage future research through the creation of a biorepository. The 51 Ohio hospitals participating in the OCCPI were selected to represent a cross-section of clinical centers in the state based on high reported volume of CRC patients, affiliation with a high volume hospital, or interest in participation. Institutional Review Board (IRB) approval was obtained by the individual hospitals, Community Oncology Programs, or by ceding review to the OSU IRB. Written informed consent was obtained. A total of 2139 colorectal cases were genotyped. Patients were considered eligible for this study if they were age 18 or older at the time of enrollment, if they had a surgical resection (or biopsy if unresectable) in the state of Ohio demonstrating an adenocarcinoma of the colorectum from 1/1/13 - 12/31/16. Matched control samples were selected from the Ohio State University Medical Center's (OSUMC) Human Genetics Sample Bank in an identical way to the selection for the Columbus-area HNPCC Study (please refer to the description for the Columbus-area HNPCC Study). Prostate, Lung, Colorectal and Ovarian Cancer Screening Trail (PLCO): PLCO enrolled 154,934 participants (men and women, aged between 55 and 74 years) at ten centers into a large, randomized, two-arm trial to determine the effectiveness of screening to reduce cancer mortality. Sequential blood samples were collected from participants assigned to the screening arm. Participation was 93% at the baseline blood draw. In the observational (control) arm, buccal cells were collected via mail using the "swish-and-spit" protocol and participation rate was 65%. Details of this study have been previously described (Huang et al., 2016) [PMID: 27673363] and are available online (http://dcp.cancer.gov/plco). For this study 1651 advanced adenoma cases and 1392 controls were selected for genotyping. Selenium and Vitamin E Prevention Trial (SELECT): The Selenium and Vitamin E Cancer Prevention Trial (SELECT) was a double-blind, placebo controlled clinical trial which explored using selenium and vitamin E alone and in combination to prevent prostate cancer in healthy men (Lippman et al., 2009) [PMID: 19066370]. Secondary endpoints included the prevention of colorectal and lung cancers. SELECT was conducted at 427 sites and centers in the United States, Canada and Puerto Rico; 35,533 men 55 years and older (50 or older if African American) were randomized beginning August 22, 2001. Supplementation was discontinued on October 23, 2008 due to futility. 308 colorectal cancer cases and 308 matched controls were selected from the SELECT population and sent for genotyping. Screening Markers For Colorectal Disease Study and Colonoscopy and Health Study (SMS-REACH): Details on this study population were previously reported (Burnett-Hartman et al., 2014) [PMID: 24875374]. Participants were enrollees in an integrated health-care delivery system in western Washington State (Group Health Cooperative, Seattle, Washington) aged 24-79 years who underwent an index colonoscopy for any indication between 1998 and 2007 and donated a buccal-cell or blood sample for genotyping analysis. Study recruitment took place in 2 phases, with phase 1 occurring in 1998-2003 and phase 2 occurring in 2004-2007. Persons who had undergone a colonoscopy less than 1 year prior to the index colonoscopy, persons with inadequate bowel preparation for the index colonoscopy, and persons with a prior or new diagnosis of colorectal cancer, a familial colorectal cancer syndrome (such as familial adenomatous polyposis), or another colorectal disease were ineligible. Patients diagnosed with adenomas or serrated polyps and persons who were polyp-free at the index colonoscopy (controls) were systematically recruited during both phases of recruitment. Approximately 75% agreed to participate and provided written informed consent. Based on medical records, persons who agreed to participate and those who refused study participation were similar with respect to age, sex, and colorectal polyp status. Study protocols were approved by the institutional review boards of the Group Health Cooperative and the Fred Hutchinson Cancer Research Center (Seattle, Washington). A total of 575 cases and 508 matched were selected for the study. Controls were matched to CRC cases as 1:1 ratio. Matching was done on age_ref, race, and sex. Age_ref was matched on +-5 years. The Women's Health Initiative (WHI): WHI is a long-term national health study that has focused on strategies for preventing heart disease, breast and colorectal cancer, and osteoporotic fractures in postmenopausal women. The original WHI study included 161,808 postmenopausal women enrolled between 1993 and 1998. The Fred Hutchinson Cancer Research Center in Seattle, WA serves as the WHI Clinical Coordinating Center for data collection, management, and analysis of the WHI. The WHI has two major parts: a partial factorial randomized Clinical Trial (CT) and an Observational Study (OS); both were conducted at 40 Clinical Centers nationwide. The CT enrolled 68,132 postmenopausal women between the ages of 50-79 into trials testing three prevention strategies. If eligible, women could choose to enroll in one, two, or all three of the trial components. The components are: Hormone Therapy Trials (HT): This double-blind component examined the effects of combined hormones or estrogen alone on the prevention of coronary heart disease and osteoporotic fractures, and associated risk for breast cancer. Women participating in this component with an intact uterus were randomized to estrogen plus progestin (conjugated equine estrogens [CEE], 0.625 mg/d plus medroxyprogesterone acetate [MPA] 2.5 mg/d] or a matching placebo. Women with prior hysterectomy were randomized to CEE or placebo. Both trials were stopped early, in July 2002 and March 2004, respectively, based on adverse effects. All HT participants continued to be followed without intervention until close-out. Dietary Modification Trial (DM): The Dietary Modification component evaluated the effect of a low-fat and high fruit, vegetable and grain diet on the prevention of breast and colorectal cancers and coronary heart disease. Study participants were randomized to either their usual eating pattern or a low-fat dietary pattern. Calcium/Vitamin D Trial (CaD): This double-blind component began 1 to 2 years after a woman joined one or both of the other clinical trial components. It evaluated the effect of calcium and vitamin D supplementation on the prevention of osteoporotic fractures and colorectal cancer. Women in this component were randomized to calcium (1000 mg/d) and vitamin D (400 IU/d) supplements or a matching placebo. The Observational Study (OS)examines the relationship between lifestyle, environmental, medical and molecular risk factors and specific measures of health or disease outcomes. This component involves tracking the medical history and health habits of 93,676 women not participating in the CT. Recruitment for the observational study was completed in 1998 and participants were followed annually for 8 to 12 years. All centrally confirmed cases of invasive colorectal cancers, or deaths from colorectal cancer were selected as potential cases from September 30, 2015 database. Controls were participants free of colorectal cancer (invasive or in situ) as of September 30, 2015. Potential cases and controls were excluded if they (1) were non-White; (2) had history of colorectal cancers at baseline; (3) lost to follow-up after enrollment; (4) DbGAP ineligible; (5) had <1.25ug of DNA; (6) selected for WHI study M26 Phase I or II; (7) selected for WHI study AS224 and also included in the imputation project. A total of 578 cases and 104,429 controls met the eligibility criteria. Each case was matched with 1 control (1:1) that exactly met the following matching criteria: age (+-5 years), 40 randomization centers (exact), WHI date (+-3 years), CaD date (+-3 years), OS flag (exact), HRT assignments (exact), DM assignments (exact), and CaD assignments (exact). Control selection was done in a time-forward manner, selecting one control for each case from the risk set at the time of the case's event. The matching algorithm was allowed to select the closest match based on a criteria to minimize an overall distance measure (Bergstralh EJ, Kosanke JL. Computerized matching of cases to controls. Technical Report #56, Department of Health Sciences Research, Mayo Clinic, Rochester MN. April 1995). Each matching factor was given the same weight. When exact matches could not be found, the matching criteria were gradually relaxed among unmatched cases and controls until all cases had found matched controls. Using the matching criteria specified above, 559 of the 578 eligible cases found exact matches. The matching criteria was then relaxed to : Age+-5, randomization centers, WHI date +- 3 years, CaD date +- 3 years, OS flag, HRT flag, DM flag, CaD flag. 17 of the remaining 19 unmatched cases found matched controls. By matching on Age+-5, randomization centers, WHI date +- 3 years, CaD date +- 3 years, OS flag, HRT flag, the remaining 2 unmatched cases found their matches.
...