Use the refinements panel to filter the search results by selecting one or more values from the refinement categories.
Aligned whole genome bisulfite sequencing data for reference epigenomes generated at Centre for Epigenome Mapping Technologies, Genome Sciences Center, B.C. Cancer Agency, Vancouver, Canada as part of the International Human Epigenome Consortium.
This study is meant to gain further knowledge in haematological cancers. Patients samples (mainly DNAs or PCR products) from haematolocical cancer patients will be sequenced, and the outputs will be correlated to their diagnosis and/or prognosis; the findings may also add more insight into the understanding of biology in this type of tumour. We will be sequencing Primary Testicular Lymphomas (PTL) to identify genetic drivers of this rare cancer
The samples include paired tumor and normal tissues from 205 patients (201 for normal and primary tumor tissues; 4 for normal, primary tumor and liver metastatic tissues). High-coverage WES sequencing or whole genome sequencing of DNA samples were performed on the Illumina HiSeq 2000 system
This dataset, named Stockholm tumor progression cohort, contains exome-sequencing samples of matched primary and metastasis samples from 20 metastatic breast cancer patients. All patients have one or more sequenced normal samples as well. The total number of samples is 125. The dataset has been used, apart from other studies, to explore tumor evolution patterns in metastatic breast cancer at Karolinska Institute Stockholm.
This dataset pertains to whole exome sequencing of paired DNA samples of Gingivo-buccal oral cancer patient.DNA was isolated from the tumor and blood tissues of 47 patients (94 samples).We have performed Nextera exome capture and sequenced exome libraries in Illumina HiSeq platform.We have uploaded BWA-ALN aligned BAM files.
Whole-exome sequencing was performed from organoids derived from 10 liver cancer biopsies (7 hepatocellular carcinoma and 3 cholangiocarcinoma), corresponding liver and non-tumoral biopsies. For 3 of the organoids, both early and late passage organoids were sequenced. Whole-exome sequencing was performed using the Agilent Clinical Research Exome capture kit followed by Illumina sequencing. BAM files are provided in this dataset.
BAM files (aligned against the hg38 genome) from a targeted amplicon sequencing (139 genes) experiment (median depth 1000X) on 218 samples from Stage 1 epithelial ovarian cancer biopises. Samples labeled "bis" or "tris" with the same ID are relapses; "left" or "right" samples indicate, in the case of bilateral tumor, from which ovary the sample was taken.
This dataset contains RNAseq data of 20 paired pre-post neoadjuvant chemotherapy breast cancer samples. In total the set contains n=20 biopsies, n=20 surgery specimens. Each sample has 2 fastq files, so n=80 fastq files are uploaded in total.
Whole Genome sequencing of colorectal cancer patients (SG-BULK-3)
We performed a proteomic serum profiling of patients with non-metastasized breast cancer (BC) who received neoadjuvant chemotherapy (NACT). Samples were collected at three timepoints during NACT. Furthermore, we compared serum samples of BC patients pre-NACT to a control group of healthy volunteers.
Whole exome sequencing was used to examine the impact of human leukocyte antigen B44 in a non-small cell lung cancer cohort treated with single agent pembrolizumab with over five years of follow-up.
A mutation accumulation experiment in colorectal cancer (CRC) derived tumoroids. A sequential single-cell cloning approach was adopted to measure the mutation rate in eight tumoroids obtained from five patients. WGS was also performed on their matched normal tissue and on standard tumoroids cultures without any cloning step. This is a 150x depth sequencing for 7 samples.
DNA Whole Exome Sequence for manuscript titled: Evaluation of Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration (EBUS-TBNA) Samples from Advanced Non-Small Cell Lung Cancer for Whole Genome, Whole Exome and Comprehensive Panel Sequencing
This data set contains the fastq files from whole-genome sequencing of temporally matched tumour (fresh frozen biopsies), blood germline and plasma samples collected from a BRCA1-mutant breast cancer patient to directly compare mutation signature analysis using gold-standard tumour-germline paired variant calling with a novel ctDNA-based method (MisMatchFinder).
We developed a high volume (100 mL) urine DNA collection kit and laboratory platform (UroScout) analyzing 25 commonly mutated UC genes and 8 copy number-altered loci for urine tumor DNA (utDNA) alterations. To assess accuracy of UC detection, we analyzed 498 urine samples from diagnostic and surveillance timepoints from 193 UC patients and 88 cancer-negative patients evaluated for UC.
A double primary colorectal cancer (CRC) in a familial setting signals a high risk of CRC. In order to find novel high/moderate penetrance CRC susceptibility genes, we performed whole-exome sequencing on germline blood samples of seven familial cases from Poland with a double primary CRC.
Background and Rationale for the Childhood Cancer Survivor Study (CCSS) Over the last several decades, advances in treatments for childhood and adolescent cancer have substantially improved survival following diagnosis. These improvements gave rise to the responsibility for investigating long-term treatment-associated morbidity and mortality. Early efforts to describe late effects were largely conducted through single-institution and limited consortia studies. However, by the mid-1980s, it became increasingly clear that these approaches had inherent limitations, including small sample size, convenience sampling, incompletely characterized populations, and limited length of follow-up. To overcome these limitations, the CCSS was proposed and funded by the National Cancer Institute (NCI) as a U01 grant in 1994. Subsequently, the strengths of the CCSS, including an efficient and extensive infrastructure, plus expanding database and biorepository, were recognized and appreciated. Thus, in consultation with the NCI, the CCSS was converted to a U24 (resource grant) funding mechanism to serve the scientific community in 2000. The overarching goal of the CCSS resource is to increase the conduct of innovative and high impact research related to pediatric cancer survivorship. CCSS has been used extensively by researchers from a wide range of disciplines to address a broad spectrum of topics. Strengths of the resource include its large size, comprehensive annotation of treatment exposures, ongoing longitudinal follow-up with characterization of a wide array of participant characteristics and outcomes, and an established biorepository. Design of the Childhood Cancer Survivor Study The Childhood Cancer Survivor Study (CCSS) is a multi-institutional, multi-disciplinary collaborative research resource comprised of a retrospective hospital-based cohort of survivors of childhood cancer and a comparison sibling cohort. Eligible survivors from 31 participating institutions were diagnosed between 1970 and 1999, prior to age 21 years, with selected common pediatric cancers (leukemia, central nervous system tumors, Hodgkin lymphoma, non-Hodgkin lymphoma, kidney tumors, neuroblastoma, soft tissue sarcoma, or bone tumors). All patients who survived five years from the date of diagnosis were eligible, regardless of disease or treatment status. The baseline questionnaire was completed by 24,368 survivors and 5,039 siblings recruited to serve as a comparison group. To date, participants have completed three general follow-up surveys, as well as a number of specialized surveys on specific topics (e.g. health care, insurance, screening practices, men's and women's health issues, adolescent health, sleep and fatigue). In addition, biological samples (buccal cells, saliva and/or blood) have been collected for over 11,000 participants. Full descriptions of the design and characteristics of the CCSS have been previously published (Robison et al; Leisenring et al.), and available data and samples are described at https://ccss.stjude.org/develop-a-study/gwas-data-resource.html. Treatment Data in the Childhood Cancer Survivor Study A key feature of CCSS is the availability of detailed treatment data, which were collected by abstraction of medical records for each individual member of the cohort. Detailed abstraction included dates of therapy, protocol information, and specific details regarding surgery, chemotherapy and radiation. Quantitative dose details were collected for 22 specific chemotherapeutic agents, including alkylating agents, anthracyclines, platinum compounds and epipodophyllotoxins. In addition to individual agent doses, algorithms have been created to calculate cumulative doses of all drugs in a specific class, such as anthracyclines (doxorubicin, daunomycin and idarubicin) or platinum agents (cisplatinum and carboplatinum). Data abstracted for surgeries included dates and both the names and corresponding International Classification of Diseases (9th revision) code. For radiation treatment data, all relevant records were sent to the Radiation Physics Center at M.D. Anderson Cancer Center for detailed abstraction and dosimetry. Initial body region dosimetry was performed for all participants, followed by more detailed dosimetry as needed for specific studies. Genomics Data in the Childhood Cancer Survivor StudyThe NCI's Division of Cancer Epidemiology and Genetics and CCSS investigators collaborated to conduct genomics studies (SNP array genotyping and whole exome sequencing) using samples from the CCSS Biorepository. Studies included all cohort participants with available DNA regardless of sex or ancestry when the genomics studies were initiated. Phenotype Data in the Childhood Cancer Survivor Study Vital status and cause of death for both participants and non-participants is determined via linkage with the National Death Index (NDI). Identification of subsequent neoplasms is based on self-report, followed by validation using medical records, or via NDI. A wide array of additional health outcomes have been ascertained via a comprehensive set of questions on the CCSS questionnaires, covering potential adverse events across a range of organ systems (hearing/vision/speech, urinary, hormonal, heart and circulatory, respiratory, digestive, brain and nervous systems). In addition to health outcomes, longitudinal data have been collected on demographics, health behaviors, family history, screening practices, insurance status, and a range of psychosocial and neurocognitive factors. A full listing of available variables and copies of the CCSS questionnaires are available at http://ccss.stjude.org. Research Areas in the Childhood Cancer Survivor Study Extensive use by the research community has resulted in over 265 published manuscripts on a wide range of topics, including associations between treatment factors and mortality, subsequent neoplasms, chronic health conditions, cardiac events, neurocognitive sequelae, psychosocial factors, fertility, and health status. Additional topics have included health behaviors, screening practices, health care access and utilization, statistical and exposure assessment methodology, and development of risk prediction models. A full listing of published manuscripts using CCSS data is available on the CCSS website at https://ccss.stjude.org/published-research/publications.html. The Childhood Cancer Survivor Study as a Resource for Investigators The CCSS is an NCI-funded resource (U24 CA55727) to promote and facilitate research among long-term survivors of cancer diagnosed during childhood and adolescence. Interested investigators are encouraged to develop research ideas and propose projects within CCSS, whether or not they are from a participating CCSS institution. The CCSS is now accepting proposals to collaborate with CCSS and NCI investigators in the use of genomics data and corresponding outcomes-related data to address innovative research questions relating to potential genetic contributions to risk for treatment-related outcomes. Any researcher, or group of researchers, qualified to conduct genetic research can submit a proposal. There are no restrictions relative to country, institution, or prior involvement in CCSS. A full description of the process for developing a proposal for genetic research in CCSS can be found at https://ccss.stjude.org/develop-a-study/gwas-data-resource.html, along with listings of approved proposals.