Extension of angiosarcoma whole genome sequencing study
Deep sequencing of melanoma for driver mutations
Head and neck squamous cell carcinoma (HNSCC) is the sixth leading cancer by incidence worldwide(1). Various chemical carcinogens (tobacco, alcohol and betel nut), human papillomavirus (HPV) infection, and genetic predisposition contribute to the etiology of HNSCC, and to the complex genetic alterations in tumor subsets that differ in prognosis and response to therapies (2). Recently, a comprehensive landscape of genomic and transcriptomic alterations in HNSCC tumors has emerged from The Cancer Genome Atlas (TCGA) Network (3). TCGA revealed novel and previously recognized gene and chromosomal region copy number alterations (CNAs), mutations, and expression clusters, and defined their frequency, co-occurrence, and relationship to common and rare subtypes of HPV(-) and (+) tumors that vary in prognosis. To identify cell line models for determining the functional role and therapeutic importance of these alterations, we are performing whole exome and RNA sequencing and bioinformatic analysis of an expanded panel of 15 HPV(-) and 11 HPV(+) HNSCC cell lines and primary oral keratinocytes. We find that the recurrent genomic alterations in cell lines are remarkably consistent with those found in more aggressive tumors, from which cell lines have traditionally been most readily adapted to culture (4). Genome-wide correlation of CN (copy number) with expression identified a suite of potential drivers or modifier genes that differ by HPV status, and are of potential biologic and therapeutic relevance. Further, our findings elucidate and validate genomic alterations underpinning numerous discoveries made with these widely-used and recently derived HNSCC lines, and provide a roadmap for their potential use as models for future studies of tumor subtypes with worse prognosis. References Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87-108. Van Waes C, Musbahi O. Genomics and advances towards precision medicine for head and neck squamous cell carcinoma. Laryngoscope Investig Otolaryngol. 2017;2(5):310-9. Cancer Genome Atlas N. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015;517(7536):576-82. White JS, Weissfeld JL, Ragin CC, Rossie KM, Martin CL, Shuster M, et al. The influence of clinical and demographic risk factors on the establishment of head and neck squamous cell carcinoma cell lines. Oral Oncol. 2007;43(7):701-12.
Overview. The personalization of therapy for cancer will require molecular characterization of unique and shared genetic aberrations. In particular, patients who have a sarcoma or other rare cancers and are candidates for clinical trials could potentially benefit by identifying eligibility for "targeted" drugs based on the "actionable" genes in their specific tumor. Growing technological advances in genomic sequencing has now made it possible to consider the use of sequence data in a clinical setting. For instance, comprehensive testing that includes whole exome and transcriptome sequencing may identify biomarkers for predictive or prognostic purposes and thereby inform treatment choices and prevention strategies. Thus, the translation of high throughput next generation sequencing would support a "personalized" strategy for cancer. However, the translation of clinical sequencing bears unique challenges including identifying patients who could benefit, developing informed consent and human subjects protections, outlining measurable outcomes, interpreting what results should be reported and validated, and how results should be reported. In addition, we know very little about how patients and clinicians will respond to the potentially confusing and overwhelming amount of information generated by genomic sequencing, and we lack model processes for clinically evaluating and presenting these data. For the promise of our innovative biotechnologies to be realized, "translational genomics" research that evaluates genomic applications within real-world clinical settings will be required. This proposal brings together expertise at the University of Michigan including clinical oncology, cancer genetics, genomic science/bioinformatics, clinical pathology, social and behavioral sciences, and bioethics in order to implement this clinical cancer sequencing project. Three integrated Projects have the following themes: Project 1) "Clinical Genomic Study" will identify patients with a rare cancer (i.e., 15 out of 100,000 individuals per year) who are eligible for clinical trials, consent them to the study, obtain biospecimens (tumor tissue, germline tissue), store clinical data, and assemble a multi-disciplinary Sequencing Tumor Board to deliberate on return of actionable or incidental genomic results; Project 2) "Sequencing & Analysis" will process biospecimens and perform comprehensive sequencing and analysis of tumors to identify point mutations, copy number changes, rearrangements/gene fusions, and aberrant gene expression; Project 3) "Ethics & Psychosocial Analysis" will observe the expert review process for evaluating sequence results and will examine the clinician and patient response to the informed consent process, delivery of genomic sequence results, and use of genomic results.