ChIP-Seq files accompanying the paper titled "Identification of Therapeutic Targets in Rhabdomyosarcoma Through Integrated Genomic, Epigenomic, and Proteomic Analyses".
ADMSC05 h3k27me3 ChIP-Seq paired end data
This study contains whole exome sequence of 27 Greenlanders and deep RNA sequencing of 17 Greenlanders
RNA sequencing data of a collection of 6 pediatric ependymoma cases
The voice disorder Reinke’s edema (RE) is a smoking- and voice-abuse associated benign lesion of the vocal folds, defined by an edema of the Reinke space, accompanied with pathological microvasculature changes and immune cell infiltration. Vocal fold fibroblasts (VFF) are the main cell type of the lamina propria and play a key role in the disease progression. Current therapy is restricted to symptomatic treatment. Hence, there is an urgent need for a better understanding of the molecular causes of the disease. In the present study, we investigated differential expression profiles of RE and control VFF by means of RNA sequencing. In addition, fast gene set enrichment analysis (FGSEA) was performed in order to obtain involved biological processes, mRNA and protein levels of targets of interest were further evaluated. We identified 74 differentially regulated genes in total, 19 of which were upregulated and 55 downregulated. Differential expression analysis and FGSEA revealed upregulated genes and pathways involved in extracellular matrix (ECM) remodeling, inflammation and fibrosis. Downregulated genes and pathways were involved in ECM degradation, cell cycle control and proliferation. The current study addressed for the first time a direct comparison of VFF from RE to control and evaluated immediate functional consequences.
Myocardial ischemia occurs when there is a mismatch between coronary oxygen delivery and metabolic requirements of the myocardium, which may be clinically manifested during angina, coronary angioplasty or cardiopulmonary bypass (CPB). Myocardial ischemia may lead to a spectrum of myocardial stunning, hibernating myocardium, and ultimately cell death if the ischemic insult is severe. In the human heart, irreversible damage begins after approximately 20 to 40 minutes of oxygen deprivation. Observed molecular and cellular changes of myocardial ischemia are characteristic of an inflammatory response, but the exact mechanisms that underlie this pathological process are unclear and may not be full emulated by animal models of ischemia or infarction. Thus, we felt it valuable to investigate a human ischemia model. During cardiac surgery, CPB with aortic cross-clamping (AoXC) and cardioplegic arrest is associated with excellent clinical outcomes and suitable operative conditions. However, despite the use of cardioprotective strategies, AoXc during CPB is accompanied by a variable, yet obligate ischemic period lasting 1 to 3 hours, resulting in hypoxia, metabolic substrate depletion, reperfusion injury, apoptosis, and necrosis. Cardiac specific biomarkers of ischemia and infarction, including troponin, are elevated even after routine coronary artery bypass graft surgery and correlate with the duration of ischemia from AoXc.This process of CPB provides us with the ability to examine the transcriptional profile before and after an expected, consistent, and reproducible human ischemic event, albeit induced by cold cardioplegic arrest and not coronary occlusion. In addition, the absence of reperfusion in this time period allows us to examine the transcriptomic response to intermittent ischemia, without having to account for the perturbations of reperfusion injury. Although various animal models have been used to examine the effects of ischemia on cardiac function, no human data exist which examine the early transcriptomic response to a left ventricular (LV) ischemic insult. We therefore characterized the effect of cold cardioplegia induced acute ischemia on the transcriptional profile of the LV by performing whole transcriptome next-generation RNA-sequencing (RNA-seq) in patients undergoing cardiac surgery by sampling human LV tissue prior to, and after, the obligate ischemia during AoXC. We hypothesized that the cold cardioplegia induced ischemic injury will dramatically alter transcription in the human myocardium, and that we would identify genes and pathways, which will identify interventional targets for pharmacological therapy. Methods:We have collected left ventricle tissue samples and blood sample from patients undergoing heart surgery. We obtained punch biopsies (~3-5μg total RNA content) from the site of a routinely placed surgical vent in the anterolateral apical left ventricular wall of patients undergoing elective aortic valve replacement surgery with cardiopulmonary bypass. After an average of 79 minutes of aortic cross-clamping with intermittent cold blood cardioplegia for myocardial protection every 20 minutes, a second biopsy was obtained in the same manner. Tissue samples were immediately placed in RNAlater® (Ambion, ThermoFisher Scientific, Waltham, MA), and after 48 hours at +4°C were stored at -80°C until RNA extraction. Total RNA was isolated with Trizol and RNA quality was assessed using the Agilent Bioanalyzer 2100 (Agilent, Santa Clara, CA). Libraries were prepared by poly(A) mRNA isolation and reverse transcription Polymerase Chain Reaction (RT-PCR), then sequenced on the Illumina HiSeq2000 or HiSeq2500 (Illumina, San Diego, CA). As samples were analyzed at different times, different read lengths were employed, initially using single-end reads (n=20) and then transitioning to paired end reads (n=216), ranging from 36 - 100 base pairs. Raw sequencing files were processed using Sickle, Skewer, and STAR software, and aligned to GrCh37 or UCSC Hg19. DNA was isolated from whole blood using standard methods. SNP genotyping was performed using the Illumina Omni2.5Exome-8 BeadChip array with additional exome content (Illumina, San Diego, CA) chip, version 1.1. We first phased and imputed 93 subjects using a phasing tool called SHAPEIT and an imputation tool called MINIMAC, with 1000 Genomes phase 1 version 3 for the reference panel. We then phased and imputed 26 more subjects using SHAPEIT, an imputation tool called IMPUTE2, and 1000 Genomes phase 3 version 5.
This dataset includes 14 bulk RNA sequencing data (28 fastq files) in the study entitled "Three-dimensional human alveolar stem cell culture models reveal infection response to SARS-CoV-2". RNA sequencing library was generated with Truseq stranded total RNA Gold kit.
ChIP-seq data (H3K4Me3, H3K27Ac histone modifications) of Hodgkin lymphoma cell line L-428. Samples were processed as previously described (Sud et al., 2018). The files are in bam format, aligned to build 37.
BLLUEPRINT ATAC-seq data for cells in the haematopoietic lineages, from adult and cord blood samples.
H3K27ac ChIP-seq of 79 primary samples derived from human acute leukemias, namely AML, T-ALL and mixed myeloid/lymphoid leukemias with CpG Island Methylator Phenotype (CIMP). In addition, 4 samples derived from CD34+ cord blood cells of healthy donors were included.