Whole exome and RNASeq raw sequencing data for a cohort 24 patients with non-small cell lung cancer, 15 adenocarcinoma (8 female, 7 male) and 9 squamous cell carcinoma(5 female, 4 male). Median age at diagnosis was 69. Tumour tissue and PBMCs were used for whole exome sequencing and RNA sequencing. This data was generated as part of a study funded by a Cancer Research UK Centres Network Accelerator Award Grant (A21998).
The ARRA Autism Sequencing Collaboration was created in 2010 bringing together expert large-scale sequencing center (at the Baylor College of Medicine, PI Richard Gibbs and the Board Institute of MIT and Harvard, PI Mark J. Daly) and a collaborative network of research labs focused on the genetics of autism (brought together by the Autism Genome Project and the Autism Consortium). These groups worked together to utilize dramatic new advances in DNA sequencing technology to reveal the genetic architecture of autism through comprehensive examination of the exotic sequence of all genes. The Autism Sequencing Consortium (ASC) was founded by Joseph D. Buxbaum and colleagues as an international group of scientists who share autism spectrum disorder (ASD) samples and genetic data. The PIs are Drs. Joseph D. Buxbaum (Icahn School of Medicine at Mount Sinai), Mark J. Daly (Broad Institute of MIT and Harvard), Bernie Devlin (University of Pittsburgh School of Medicine), Kathryn Roeder (Carnegie Mellon University, Matthew State and Stephan Sanders (University of California, San Francisco). The rationale for the ASC is described in Buxbaum et al. 2012, and this paper should be cited when referencing the data set. All shared data and analysis is hosted at a single site, which enables joint analysis of large-scale data from many groups. The ASC was first supported by a cooperative agreement grant to four lead sites funded by the National Institute of Mental Health (U01MH100233, U01MH100209, U01MH100229, U01MH100239), with additional support from the National Human Genome Research Institute. The NIMH recently renewed their support with a second grant (U01MH111661, U01MH111660, U01MH111658 and U01MH111662) to expand the project from 29,000 genomes to more than 50,000 exomes over the next 5 years. NHGRI provides ongoing sequencing support for the ASD through the Broad Center for Common Disease Genomics (UM1HG008895, Mark Daly, PI).
This dbGaP study contains variant call files generated from whole-genome sequencing data of families with autism. The variant callers include FreeBayes, GATK, Platypus, and Strelka2. A family-level VCF file, from each caller, is provided for each family in the study. The families included in this study are from the Simons Simplex Collection (SSC), the Study of Autism Genetics Exploration (SAGE), and The Autism Simplex Collection (TASC); sequencing was performed at the New York Genome Center, as part of the Centers for Common Disease Genomics (CCDG) Consortium. The analysis to generate the variant callsets was supported by a K99 Pathway to Independence grant to Dr. Tychele Turner (1K99MH117165-01). *Access to phenotype data at the individual level for Simons Simplex Collection (SSC) subjects can be requested from SFARI Base: https://www.sfari.org/resource/sfari-base/.
The goal for the University Texas PDX Development and Trial Center (UTPDTC) is to optimize personalized biomarker-based cancer therapy and identify effective targeted drugs based on the molecular characteristics of each tumor. Our short-term goals are to establish a biobank of clinically, and molecularly-annotated Patient-Derived Xenografts (PDXs) and to use PDXs as a platform for preclinical drug development and biomarker discovery. The primary goal for UTPDTC investigators will be to develop PDX trial strategies for preclinical testing of single agents and drug combinations. These models will allow the determination of the optimal treatments (single drugs or combinations) that should be tested in clinical trials in increasingly individualized, molecularly defined subsets of tumors. The goal of the Patient-Derived Xenograft Core is to provide high-quality clinically relevant and molecularly annotated PDX models for the research projects proposed in the University of Texas PDX Development and Trial Center (UTPDTC) grant application and to the research activity of the NCI PDX Development and Trial Centers Research Network (PDXNet) by leveraging PDX resources at our institutions and developing new PDX models from human cancer specimens using rigorous quality standards so that the models can be used to guide clinical trial development. The PDX models developed and/or characterized by the PDX Core will be available to other cancer researchers through the PDXNet and NCI Patient-Derived Models Repository (PDMR).
Investigators who download restricted data from this dataset should: - Not attempt to identify individual human research participants from whom the data were obtained. - Acknowledge in all oral or written presentations, disclosures, or publications the specific dataset(s) or applicable accession number(s) and the repositories through which the investigator accessed any data. Any user requesting access to this data must apply for authorization, which is granted by the Data Access Committee (DAC). The DAC will review and approve or disapprove all requests from the research community for data access. Decisions to grant access are made based on whether the request conforms to the specifications of the Research Ethics Committee approval and program specific requirements or procedures (if any).
This is a research development/planning grant application to initiate collaborative studies with investigators at Bilkent University in Turkey to study the genetics of Essential Tremor (ET). ET is one of the most common neurological diseases, with an estimated 7 million affected individuals in the United States. The most characteristic clinical feature of ET is a kinetic tremor in the hands or arms, which is mild early in the disease process. As the disease progresses, tremor becomes more severe and more anatomically widespread (e.g., head, trunk). Aside from tremor, patients with ET may also present with other motor features including gait ataxia. Non-motor features can include psychiatric manifestations, cognitive decline and dementia. Despite its extraordinarily high prevalence, the genetic causes of ET are largely unknown. We propose to develop a genetic study of ET focusing on consanguineous families in Turkey. Turkey with a population of about 70 million has a high rate of consanguineous marriages. The rate of consanguinity is estimated to be as much as 20-25% with approximately 70% of all consanguineous marriages involving first cousins. Studying the genetics of ET in the Turkish population, particularly in large consanguineous families, may identify novel genetic causes of ET that are also relevant to ET populations in the United States and worldwide. The proposed research has a high probability of success with our collaborators Drs Ozcelik and Tekinay's expertise in human genetics and functional studies together with an established resource of large consanguineous ET families. The specific aims of this planning grant are to: (1) further develop and solidify collaborations with the team in Bilkent and define the scope of the research that will be the focus of an R01 application, (2) assess the Bilkent team's resources and needs in order to successfully conduct the research, (3) implement cross-training between the United States and Turkish groups in the areas of human genetics, genetic epidemiology and risk factor assessment, genomics, clinical diagnosis, functional studies and personalized genomic medicine, and (4) conduct pilot studies to generate preliminary data necessary for an R01 application.
Preeclampsia (PE) is a syndrome affecting pregnant mothers and fetus/babies characterised by hypertension and proteinuria, and is a leading cause of maternal and fetal death and of premature births worldwide. The InterPregGen Consortium was funded by a European Framework 7 (FP7) grant and grew out of the WTCCC3 GWAS comparing ~2000 UK PE mothers with ~6000 common UK controls. The EGAS00001001266 study includes two components the FP7 InterPregGen project: (a) GWAS case-control meta-analysis of maternal PE cases from Europe (UK, Iceland, Norway, Denmark, Finland) and Central Asia (Kazakhstan, Uzbekistan); (b) GWAS case-control meta-analysis of PE fetal (baby) cases from Europe (UK, Iceland, Norway, Denmark) and Central Asia (Kazakhstan, Uzbekistan)
Preeclampsia (PE) is a syndrome affecting pregnant mothers and fetus/babies characterised by hypertension and proteinuria, and is a leading cause of maternal and fetal death and of premature births worldwide. The InterPregGen Consortium was funded by a European Framework 7 (FP7) grant and grew out of the WTCCC3 GWAS comparing ~2000 UK PE mothers with ~6000 common UK controls. This dataset includes lllumina 2.5-8 genotyping of maternal and fetal PE cases and controls from Kazakhstan. This study is one component of the InterPregGen FP7 project. DNA samples for this component were collected by InterPregGen Consortium collaborators at the Scientific Center of Obstetrics, Gynecology and Perinatology, Almaty, Kazakhstan (Gulnara Svyatova, Principal Investigator).
Preeclampsia (PE) is a syndrome affecting pregnant mothers and fetus/babies characterised by hypertension and proteinuria, and is a leading cause of maternal and fetal death and of premature births worldwide. The InterPregGen Consortium was funded by a European Framework 7 (FP7) grant and grew out of the WTCCC3 GWAS comparing ~2000 UK PE mothers with ~6000 common UK controls. This dataset includes OmniExpress genotyping of maternal and fetal PE cases and controls from Kazakhstan. This study is one component of the InterPregGen FP7 project. DNA samples for this component were collected by InterPregGen Consortium collaborators at the Scientific Center of Obstetrics, Gynecology and Perinatology, Almaty, Kazakhstan (Gulnara Svyatova, Principal Investigator).
Preeclampsia (PE) is a syndrome affecting pregnant mothers and fetus/babies characterised by hypertension and proteinuria, and is a leading cause of maternal and fetal death and of premature births worldwide. The InterPregGen Consortium was funded by a European Framework 7 (FP7) grant and grew out of the WTCCC3 GWAS comparing ~2000 UK PE mothers with ~6000 common UK controls. This dataset includes Infinium GSA genotyping of maternal, paternal and fetal PE cases and controls from Kazakhstan. This study is one component of the InterPregGen FP7 project. DNA samples for this component were collected by InterPregGen Consortium collaborators at the Scientific Center of Obstetrics, Gynecology and Perinatology, Almaty, Kazakhstan (Gulnara Svyatova, Principal Investigator).
The primary aim of the Pharmacogenomic Evaluation of Antihypertensive Responses grant (funded by NIH Pharmacogenomic Research Network grant U01 GM074492) was to identify genetic determinants of blood pressure response and adverse events after antihypertensive treatments. Two different clinical trials with genomic information available were included: PEAR-1 and PEAR-2 studies. The PEAR-1 study (clinicaltrials.gov identifier NCT00246519) was a randomized controlled clinical trial evaluating genetic determinants of BP responses and adverse metabolic responses to atenolol and hydrochlorothiazide (HCTZ) monotherapy and in combination (PMID: 19249413). Briefly, PEAR-1 recruited 768 hypertension individuals with uncomplicated hypertension who were randomized to either monotherapy of atenolol 50 mg daily or HCTZ 12.5 mg daily for 3 weeks, followed by dose titration to 100 mg and 25 mg daily, then the combination therapy. BP and metabolic responses to monotherapy and combination therapy were assessed after an average of 9 weeks of antihypertensive treatment. BP was measured using three different methods: home, office and ambulatory. For the BP analysis, a composite weighted average of the office, home, ambulatory daytime and nighttime BP responses was calculated based on the row sums of the inverse of the inter-method covariance matrices. Genomic DNA from PEAR-1 participants was genotyped using the Illumina Human Omni1MQuad BeadChip (Illumina, San Diego, CA, USA). The PEAR-2 study was a multicenter sequential monotherapy clinical trial (clinicaltrials.gov identifier NCT01203852) evaluating genetic determinants of BP response to metoprolol monotherapy and chlorthalidone monotherapy. After a washout period (if necessary), eligible hypertensive patients with uncomplicated hypertension received metoprolol tartrate 50 mg twice daily for 3 weeks and the dose was increased to 100 mg twice daily for an additional six weeks if an inadequate response was observed (>120/70 mm Hg and heart rate >55 beats/min). After second washout period, patients received chlorthalidone monotherapy. Home and office BP measurements were collected in PEAR-2 study. We have previously demonstrated that home BP is the more informative single BP measurement compared to the office BP measurement. Therefore, home BP is the phenotype used for the genome-wide association analysis for PEAR-2. PEAR-2 samples were genotyped using the Illumina Human Omni2.5S Beadchip (Illumina, San Diego, CA, USA).
In this study, we will apply a multi-staged approach to reveal genes harboring rare variants that are associated with aggressive PCa. Whole-exome sequencing (Aim 1a) of 2,774 aggressive cases and 2,776 non-aggressive cases of European ancestry will be conducted followed by rare variant analysis of single sites and gene burden testing to identify novel susceptibility loci/genes for aggressive disease. We will validate the most significantly associated genes (~500) through targeted sequencing in an additional 6,415 aggressive and 5,586 non-aggressive cases and 1,890 controls (Aim 1b). Next, we will investigate the clinical predictive utility of the genes/variants identified in 2,291 cases in the STHM3 trial who are undergoing biopsy based on PSA and genetic risk score stratification (Aim 2). Through this tiered approach we expect to significantly advance knowledge of aggressive PCa etiology and health disparities as well as guide the development of early detection and prognostic strategies for the subset of men who are most susceptible to this fatal form of disease. In this case-case study of aggressive vs non aggressive prostate cancer, aggressive cases are defined as prostate cancer as cause of death, (T4 disease or T3 disease) and Gleason 8+. Non-aggressive cases are men with T1/2 disease and Gleason ACKNOWLEDGMENTS and CONTRIBUTING SITES CAPS, PROCAP, STHM1, STHM2: Swedish Cancer Society (CAN 2016/818), Swedish Research Council (2014/2269).STHM3: Stockholm County Council (Stockholms Läns Landsting).MEC: Funding provided by the National Cancer Institute: Understanding Ethnic Differences in Cancer, 2U01CA164973 and The Genetic Basis of Aggressive Prostate Cancer, The Role of Rare Variation, 5R01CA196931-02.ATBC: The ATBC Study is supported by the Intramural Research Program of the U.S. National Cancer Institute, National Institutes of Health, and by U.S. Public Health Service contract HHSN261201500005C from the National Cancer Institute, Department of Health and Human Services.COSM: The Swedish Research Council/National Research Infrastructure Grant (VR 2014/6397; VR 2015/5997) The Swedish Cancer Foundation (CAN 2013/456; CAN 2016/727)CPSII: The authors express sincere appreciation to all Cancer Prevention Study II participants and to each member of the study and biospecimen management group. The American Cancer Society funds the creation, maintenance, and updating of the Cancer Prevention Study-II cohort.MCCS/APCS/PCFS: The Melbourne Collaborative Cohort Study (MCCS) recruitment was funded by VicHealth and Cancer Council Victoria and further supported by Australian National Health and Medical Research Council (NHMRC) grants 209057 and 396414. The Aggressive Prostate Cancer Case-Control Study (APCS) was funded by NHMRC grant 623204. The Prostate Cancer Family Study (PCFS) was fully funded by Cancer Council Victoria. Cancer Council Victoria funds the continuing maintenance and updating of the MCCS, APCS and PCFS. Cases and their vital status are ascertained and followed up through the Victorian Cancer Registry and the Australian Institute of Health and Welfare, including the National Death Index and the Australian Cancer Database.PLCO: The Prostate Lung Colorectal Ovarian Cancer Screening Trial (PLCO) was supported by the Intramural Research Program of the Division of Cancer Epidemiology and Genetics and by contracts from the Division of Cancer Prevention, National Cancer Institute, US National Institutes of Health, Department of Health and Human Services. EPIC: The coordination of EPIC is financially supported by International Agency for Research on Cancer (IARC) and also by the Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London which has additional infrastructure support provided by the NIHR Imperial Biomedical Research Centre (BRC). The national cohorts are supported by: Danish Cancer Society (Denmark); Ligue Contre le Cancer, Institut Gustave Roussy, Mutuelle Générale de l'Education Nationale, Institut National de la Santé et de la Recherche Médicale (INSERM) (France); German Cancer Aid, German Cancer Research Center (DKFZ), German Institute of Human Nutrition Potsdam- Rehbruecke (DIfE), Federal Ministry of Education and Research (BMBF) (Germany); Associazione Italiana per la Ricerca sul Cancro-AIRC-Italy, Compagnia di SanPaolo and National Research Council (Italy); Dutch Ministry of Public Health, Welfare and Sports (VWS), Netherlands Cancer Registry (NKR), LK Research Funds, Dutch Prevention Funds, Dutch ZON (Zorg Onderzoek Nederland), World Cancer Research Fund (WCRF), Statistics Netherlands (The Netherlands); Health Research Fund (FIS) - Instituto de Salud Carlos III (ISCIII), Regional Governments of Andalucía, Asturias, Basque Country, Murcia and Navarra, and the Catalan Institute of Oncology - ICO (Spain); Swedish Cancer Society, Swedish Research Council and County Councils of Skåne and Västerbotten (Sweden); Cancer Research UK (14136 to EPIC-Norfolk; C8221/A19170 and C8221/A29017 to EPIC-Oxford), Medical Research Council (1000143 to EPIC-Norfolk; MR/M012190/1 to EPIC-Oxford). (United Kingdom). DFCI: Linda and Arthur Gelb and Rebecca and Nathan Milikowsky. HPFS and PHS: The Health Professionals Follow-up Study was supported by U01 167552 and P01 CA228696 from the National Cancer Institute, and with support from the Prostate Cancer Foundation. The Physicians' Health Study was supported by grants CA34944, CA40360, CA097193, HL26490 and HL34595.Northwestern: P50CA180995 (Catalona) 08/01/15 – 07/31/20 NIH/NCI SPORE in Prostate Cancer; The Urological Research FoundationPROMPT: MRC UK - Project reference G0500966, Cambridge BRC infrastructure funding, Cambridge Biomedical Research Campus (BRC-1215-20014), CRUK Cambridge Cancer Centre infrastructure funding (they are requesting this statement is written in blue for publications).ICR: This work was supported by the NIH R01 grant 5R01CA196931-02. The samples from the UK were from UKGPCS and PrompT. The UKGPCS study was supported by Cancer Research UK (grant numbers C5047/A7357, C1287/A10118, C1287/A5260, C5047/A3354, C5047/A10692, C16913/A6135 and C16913/A6835). We would like to acknowledge the NCRN nurses and Consultants for their work in the UKGPCS study. We thank all the patients who took part in this study. We also acknowledge The Institute of Cancer Research, The National Cancer Research Network UK, The National Cancer Research Institute (NCRI) UK for their ongoing support. We are grateful for support of NIHR funding to the NIHR Biomedical Research Centre at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust.Funding:CIDR grant X01HG008336
Pancreatic neuroendocrine tumors (PNETs), often referred to as "islet cell tumors", are neuroendocrine neoplasms that arise from cells of the endocrine and nervous system within the pancreas. These rare tumors which originate from the pancreatic islet are divided into many categories and are often classified by the hormone most strongly secreted. With the collaboration of the Elkins Pancreatic Center, the Human Genome Sequencing Center (HGSC) at Baylor College of Medicine had access to approximately 30 untreated tumor specimens and matched normal blood samples. Since the onset and progression of cancer is driven by extensive mutation of the genome, we are combining enrichment of exonic DNA with next generation sequencing to detect and characterize the somatic mutation profile of patients with pancreatic neuroendocrine cancer. This work was done at the Human Genome Sequencing Center (HGSC) in collaboration with the Elkins Pancreatic Center at Baylor College of Medicine in Houston, TX and was supported by grant number 5U54HG003273 from National Human Genome Research Institute (NHGRI).
The overarching goals of Genetics of Glucose regulation in Gestation and Growth (Gen3G) are to increase our understanding of biological, environmental, and genetic determinants of glucose regulation during pregnancy and their impact on fetal/child development. Gen3G is a prospective cohort study: we initially recruited 1,024 pregnant women between 2010-2013 at Blood Sampling in Pregnancy Clinic during the first trimester of pregnancy (median 9 weeks of gestation) in Sherbrooke, Québec, Canada. We assessed 898 pregnant women at second trimester (median 26 weeks of gestation), when participants completed a 75g oral glucose tolerance test (OGTT) as clinically indicated for screening of gestational diabetes mellitus (GDM). We collected data for 854 mother-child dyads at delivery (from medical records), in addition to placenta and/or cord blood samples in majority of newborns.The overall goal of the grant that supported data that is included in this dbGaP submission was to discover novel placental factors that regulate glucose metabolism in pregnancy and predict GDM by conducting genome-wide transcriptomics (RNA and miRNA) in carefully collected placenta samples from Gen3G.
This project will aim at sequencing and analysing three samples from a patient with acute myeloid leukaemia (AML) with t(15;17) translocation (acute promyelocytic leukaemia). The patient was treated with standard chemotherapy and samples (blood and bone marrow) taken for minimal residual disease measured during and after chemotherapy. 2-3years later the patient presented a second AML containing inv (16).In this project we will sequence both AML and normal genomes to find associated mutations This will allow unprecedented insights into the dynamics of appearance of secondary AML, since we will be able to use the MRD samples to track the emergence of the inv(16) leukaemia. We will also be able to distinguish whether the 2 leukaemias are clonally related or not. This project will entail sequencing and analysis of three samples (whole genome 30x coverage) using Hi-Seq. The funds from this grant will cover the cost of sequencing 9 lanes from the AML t(15;17) sample, 9 lanes from AML inv(16) sample and 8 lanes from the normal genome.
Preeclampsia (PE) is a syndrome affecting pregnant mothers and fetus/babies characterised by hypertension and proteinuria, and is a leading cause of maternal and fetal death and of premature births worldwide. The InterPregGen Consortium was funded by a European Framework 7 (FP7) grant and grew out of the WTCCC3 GWAS comparing ~2000 UK PE mothers with ~6000 common UK controls. The EGAS00001000416 study data is whole genome sequencing of 100 unrelated Uzbeks in order to impute genotypes into PE cases and controls from Uzbekistan and to provide genetic data and infrastructure for future genetic studies in Uzbekistan and Central Asia more generally and to fill a gap in worldwide information as Central Asia is not adequately represented in available genomic data. This study is one component of the InterPregGen FP7 project. DNA samples for this component were collected by InterPregGen Consortium collaborators in Tashkent, Uzbekistan at the Institute of Immunology, Uzbek Academy of Sciences and at the Republic Specialized Scientific Practical Medical Centre of Obstetrics and Gynecology
Preeclampsia (PE) is a syndrome affecting pregnant mothers and fetus/babies characterised by hypertension and proteinuria, and is a leading cause of maternal and fetal death and of premature births worldwide. The InterPregGen Consortium was funded by a European Framework 7 (FP7) grant and grew out of the WTCCC3 GWAS comparing ~2000 UK PE mothers with ~6000 common UK controls. The EGAS00001000417 study data is whole genome sequencing of 100 unrelated Kazakhs in order to impute genotypes into PE cases and controls from Kazakhstan and to provide genetic data and infrastructure for future genetic studies in Kazakhstan and Central Asia more generally and to fill a gap in worldwide information as Central Asia is not adequately represented in available genomic data. This study is one component of the InterPregGen FP7 project. DNA samples for this component were collected by InterPregGen Consortium collaborators at the Scientific Center of Obstetrics, Gynecology and Perinatology, Almaty, Kazakhstan (Gulnara Svyatova, Principal Investigator)
The Pathways Study (NCI R01 CA105274, PI: Kushi), is a prospective cohort study of a diverse population of recently diagnosed breast cancer survivors in KPNC. The aims are to examine the effect on recurrence and survival of 1) lifestyle factors such as diet, physical activity, and use of complementary and alternative therapies and 2) molecular factors such as biomarkers of inflammation and tumor DNA methylation profiles. Recruitment into the cohort was from January 2006 to May 2013. Baseline data collection was by in-person interview (on average two months post-diagnosis), with follow-up via mailed or phone questionnaires at 6, 24, and 72 months and outcomes and comorbidities at 12, 24, 48, 72, and 96 months post-enrollment. The Pathways Study is now funded through May 2021 as a cancer cohort infrastructure grant (U01 CA195565, MPI: Kushi/Ambrosone). The Pathways baseline interview consists of interviewer- and self-administered questionnaires. Interviewer-administered questionnaires collected information including demographics, family health history, pregnancy health history, menstrual history, history of breast care screening procedures, smoking history, hormone use, medication history, and vitamin and mineral use. Self-administered questionnaires collected information on diet, physical activity, CAM use, lymphedema, and psychosocial and quality of life measures.
Data Access NOTE: Please refer to the “Authorized Access” section below for information about how access to the data from this accession differs from many other dbGaP accessions. Objectives: To establish a safe and tolerable dose of sulforaphane that effects in vivo antioxidants via Nrf2 for development as a potential novel treatment for participants with Chronic Obstructive Pulmonary Disease (COPD).Background: Chronic Obstructive Pulmonary Disease (COPD), caused primarily by smoking, is the third leading cause of death in the United States and world-wide. Surprisingly, there are few treatments available to address the pathobiology of COPD other than cessation of smoking. The development and progression of COPD are associated with increased inflammatory response(s) and increased oxidative stress in the lung. Thus, one approach to the development of novel therapies is the stimulation of endogenous antioxidant defense mechanisms.Nuclear factor erythroid-2-related factor 2 (NFE2L2/Nrf2) is a transcription factor activated by oxidative stress. Nrf2 activity promotes anti-oxidant enzymes, and anti-oxidant enzymes play key roles in cellular defenses. Sulforaphane, a derivative of broccoli and other cruciferous vegetables, has been shown to stimulate Nrf2 activity in both in vivo and in vitro experiments. For example, activation of Nrf2 protected mice from developing emphysema after chronic smoke exposure and decreased oxidative stress. Similarly, activation of Nrf2 in human COPD lung cells resulted in decreased oxidative stress. Therefore, this study was designed to assess whether daily ingestion of sulforaphane by COPD participants for four weeks increased Nrf2 activity in alveolar macrophages and bronchial epithelial cells. Participants: There were a total of 89 participants randomized to one of three treatment arms. Of these, 31 participants were randomized to the placebo arm, and 29 participants were randomized to the each of the sulforaphane arms. One participant withdrew from the placebo arm, therefore, a total of 88 participants completed the study.Design: Participants were assigned to receive sulforaphane at 25 micromoles (4.4mg), sulforaphane at 150 micromoles (26.6 mg), or placebo (microcellulose) once daily by mouth. Computer-generated treatment assignments were blinded to participants, clinical staff, and study staff. Doses were back-filled with methylcellulose and presented in similar capsules to compensate for appearance and weight differences in sulforaphane and placebo treatments arms.There were a total of five study visits over the six-week study period. Prior to randomization, participants were assessed for eligibility, which included baseline data collection. Participants provided medical histories, underwent a physical examination, pre-and-post bronchodilator spirometry, lung volume measurements, carbon monoxide diffusing capacity (DLCO), and pulse oximetry over the six-week study period. Follow up data and biospecimens were collected at the final visit, which was targeted for four weeks after randomization. Two fiberoptic bronchoscopies were performed under sedation to collect endobronchial brushings and bronchoalveolar lavage used to isolate alveolar macrophages and bronchial epithelial cells. The first bronchoscopy was performed on the day of randomization, and the second bronchoscopy was performed the day after the final visit. In addition, nasal brushings were obtained prior to bronchoscopy to isolate nasal epithelial cells. The primary outcomes were changes in Nrf2 target gene expression at four weeks in alveolar macrophages and bronchial epithelial cells. The target genes for the primary outcome were NQ01, H01, AKR1C1, and AKR1C3. Secondary outcomes included the evaluation of: expression of other genes in the Nrf2/Keap1 pathway (e.g. Nrf2/NFE2L2, KEAP1, and SLPI), markers of oxidative stress (e.g., isoprostane and thiobarbituric acid reactive substances) in plasma and expired breath condensate, and cytokine profiles in bronchoalveolar lavage fluid. Conclusions: Sulforaphane administered at four weeks doses of 25umoles and 150umoles to participants with COPD did not significantly increase Nrf2 target gene expression in alveolar macrophages or bronchial epithelial cells. In addition, changes in oxidative stress markers and the expression of other genes in the Nrf2/Keap1 pathway were not statistically significant between the treatment groups.Wise RA, Holbrook JT, Criner G, et al. Lack of Effect of Oral Sulforaphane Administration on Nrf2 Expression in COPD: A Randomized, Double-Blind, Placebo Controlled Trial. Vij N, ed. PLoS ONE. 2016; 11(11):e0163716. doi:10.1371/journal.pone.0163716 (PMID: 27832073; PMID: 28350841).
Peripheral T-cell lymphomas not otherwise specified (PTCL-NOS) represent a heterogeneous group of nodal and extra-nodal mature T-cell lymphomas, with a low prevalence in Western countries. PTCL-NOSs account for about 25% of all PTCLs and are currently diagnosed based on exclusion criteria, as this lymphomas lack unifying morphological, phenotypic and genomic features. Cytogenetic and FISH analysis of PTCL-NOS samples have not revealed recurrent pathogenetic abnormalities, while gene expression profiling has shown only partial ability to segregate cases representing homogeneous clinic-pathological entities. This underscores the need to look at PTCL-NOS with innovative and high-throughput approaches to identify recurrent genetic lesions that could further our understanding of the biology of this heterogeneous group of diseases, provide better diagnostic tools and perhaps new targets for innovative treatments. Our aim is to study ~15 patients affected by PTCL-NOS. Out study will be funded by a private, non-profit Italian cancer research fund (Associazione Italiana per la Ricerca sul Cancro, www.airc.it) based on a grant owned by Anna Dodero and Cristiana Carniti, hematologists at INT. Samples will be analysed by whole genome sequencing using Illumina X10 machines, on a 150bp-PE protocol. Data will be analysed using the pipeline available in Team 78, under the supervision of Peter Campbell, the WTSI faculty who will oversee the project, and by Francesco Maura, visiting scientist at the WTSI.
The substantial reproductive impact of schizophrenia, for which affected individuals have fewer than half as many offspring as unaffected individuals do, implies that mutations of largest effect will frequently be de novo mutations. Ascertaining exome sequence variation in father-mother-offspring trios allows such mutations to be identified and distinguished from the far-larger amount of rare variation that is inherited by each individual. The pursuit of this approach in a large, well-powered cohort of trios can also provide lessons that inform the development of such gene discovery strategies more generally in human genetics. Schizophrenia trios from the Taiwanese population are being collected by Dr. Ming Tsuang (PI, UC San Diego, California) and investigators in Taiwan (PI, Dr. Hai Gwo Hwu; both funded by NIMH grant 1R01MH085560; Expanding Rapid Ascertainment Networks of Schizophrenia Families in Taiwan). A total of 3800 trios are anticipated to be collected by May 2013. This represents a highly homogenous national sample from the same ancestral population. DNA samples will be obtained from the NIMH Repository, Rutgers University Cell and DNA Repository (described below) and stored at the Broad Institute. Genetic and data analyses will be performed at the Broad Institute. We propose to sequence the whole exome of trios by hybrid capture and Illumina next generation sequencing and perform targeted genotyping and validation of variants (SNPs, indels and CNVs) using several molecular methods, to include emulsion-based PCR and Sanger sequencing.
This project follows a cohort of 78 Very Low Birth Weight (VLBW) previously enrolled infants in a R21 grant plus additional 25 infants through their Neonatal Intensive Care Unit (NICU) stay until they reach the age of 4 years. The data, gathered over 6 weeks of the NICU stay, includes multiple factors, such as prenatal and postnatal events and illnesses, received human milk amount, weekly means of cytokines, chemokines, growth factors, and secretory Immunoglobulin A in the milk, and weekly levels of fecal calprotectin. These factors could potentially alter the gut microbiome. Microbiome species and diversities will be measured in the laboratory of Dr. Jack Gilbert at Argonne National Laboratory using state of the science deep sequencing and amplification of microbial sRNA genes. The microbiome will again be measured in stool samples from those children at the ages of 2 and 4 years. Relationship between the prenatal and postnatal factors, human milk volume and immunobiology, fecal calprotectin levels, and the very early microbiome will be analyzed. The predictive power of the VLBW infant gut microbiome for determining later childhood microbiomes will be analyzed prospectively. The relationships between microbiomes across time and later growth, development and health will be determined. VLBW infants are at risk for both early and later health effects, and the role of the microbiome in these effects will be measured in this prospective study.
Original description of the study: From ELLIPSE (linked to the PRACTICAL consortium), we contributed ~78,000 SNPs to the OncoArray. A large fraction of the content was derived from the GWAS meta-analyses in European ancestry populations (overall and aggressive disease; ~27K SNPs). We also selected just over 10,000 SNPs from the meta-analyses in the non-European populations, with a majority of these SNPs coming from the analysis of overall prostate cancer in African ancestry populations as well as from the multiethnic meta-analysis. A substantial fraction of SNPs (~28,000) were also selected for fine-mapping of 53 loci not included in the common fine-mapping regions (tagging at r2>0.9 across ±500kb regions). We also selected a few thousand SNPs related with PSA levels and/or disease survival as well as SNPs from candidate lists provided by study collaborators, as well as from meta-analyses of exome SNP chip data from the Multiethnic Cohort and UK studies. The Contributing Studies: Aarhus: Hospital-based, Retrospective, Observational. Source of cases: Patients treated for prostate adenocarcinoma at Department of Urology, Aarhus University Hospital, Skejby (Aarhus, Denmark). Source of controls: Age-matched males treated for myocardial infarction or undergoing coronary angioplasty, but with no prostate cancer diagnosis based on information retrieved from the Danish Cancer Register and the Danish Cause of Death Register. AHS: Nested case-control study within prospective cohort. Source of cases: linkage to cancer registries in study states. Source of controls: matched controls from cohort ATBC: Prospective, nested case-control. Source of cases: Finnish male smokers aged 50-69 years at baseline. Source of controls: Finnish male smokers aged 50-69 years at baseline BioVu: Cases identified in a biobank linked to electronic health records. Source of cases: A total of 214 cases were identified in the VUMC de-identified electronic health records database (the Synthetic Derivative) and shipped to USC for genotyping in April 2014. The following criteria were used to identify cases: Age 18 or greater; male; African Americans (Black) only. Note that African ancestry is not self-identified, it is administratively or third-party assigned (which has been shown to be highly correlated with genetic ancestry for African Americans in BioVU; see references). Source of controls: Controls were identified in the de-identified electronic health record. Unfortunately, they were not age matched to the cases, and therefore cannot be used for this study. Canary PASS: Prospective, Multi-site, Observational Active Surveillance Study. Source of cases: clinic based from Beth Israel Deaconness Medical Center, Eastern Virginia Medical School, University of California at San Francisco, University of Texas Health Sciences Center San Antonio, University of Washington, VA Puget Sound. Source of controls: N/A CCI: Case series, Hospital-based. Source of cases: Cases identified through clinics at the Cross Cancer Institute. Source of controls: N/A CerePP French Prostate Cancer Case-Control Study (ProGene): Case-Control, Prospective, Observational, Hospital-based. Source of cases: Patients, treated in French departments of Urology, who had histologically confirmed prostate cancer. Source of controls: Controls were recruited as participating in a systematic health screening program and found unaffected (normal digital rectal examination and total PSA < 4 ng/ml, or negative biopsy if PSA > 4 ng/ml). COH: hospital-based cases and controls from outside. Source of cases: Consented prostate cancer cases at City of Hope. Source of controls: Consented unaffected males that were part of other studies where they consented to have their DNA used for other research studies. COSM: Population-based cohort. Source of cases: General population. Source of controls: General population CPCS1: Case-control - Denmark. Source of cases: Hospital referrals. Source of controls: Copenhagen General Population Study CPCS2: Source of cases: Hospital referrals. Source of controls: Copenhagen General Population Study CPDR: Retrospective cohort. Source of cases: Walter Reed National Military Medical Center. Source of controls: Walter Reed National Military Medical Center ACS_CPS-II: Nested case-control derived from a prospective cohort study. Source of cases: Identified through self-report on follow-up questionnaires and verified through medical records or cancer registries, identified through cancer registries or the National Death Index (with prostate cancer as the primary cause of death). Source of controls: Cohort participants who were cancer-free at the time of diagnosis of the matched case, also matched on age (±6 mo) and date of biospecimen donation (±6 mo). EPIC: Case-control - Germany, Greece, Italy, Netherlands, Spain, Sweden, UK. Source of cases: Identified through record linkage with population-based cancer registries in Italy, the Netherlands, Spain, Sweden and UK. In Germany and Greece, follow-up is active and achieved through checks of insurance records and cancer and pathology registries as well as via self-reported questionnaires; self-reported incident cancers are verified through medical records. Source of controls: Cohort participants without a diagnosis of cancer EPICAP: Case-control, Population-based, ages less than 75 years at diagnosis, Hérault, France. Source of cases: Prostate cancer cases in all public hospitals and private urology clinics of département of Hérault in France. Cases validation by the Hérault Cancer Registry. Source of controls: Population-based controls, frequency age matched (5-year groups). Quotas by socio-economic status (SES) in order to obtain a distribution by SES among controls identical to the SES distribution among general population men, conditionally to age. ERSPC: Population-based randomized trial. Source of cases: Men with PrCa from screening arm ERSPC Rotterdam. Source of controls: Men without PrCa from screening arm ERSPC Rotterdam ESTHER: Case-control, Prospective, Observational, Population-based. Source of cases: Prostate cancer cases in all hospitals in the state of Saarland, from 2001-2003. Source of controls: Random sample of participants from routine health check-up in Saarland, in 2000-2002 FHCRC: Population-based, case-control, ages 35-74 years at diagnosis, King County, WA, USA. Source of cases: Identified through the Seattle-Puget Sound SEER cancer registry. Source of controls: Randomly selected, age-frequency matched residents from the same county as cases Gene-PARE: Hospital-based. Source of cases: Patients that received radiotherapy for treatment of prostate cancer. Source of controls: n/a Hamburg-Zagreb: Hospital-based, Prospective. Source of cases: Prostate cancer cases seen at the Department of Oncology, University Hospital Center Zagreb, Croatia. Source of controls: Population-based (Croatia), healthy men, older than 50, with no medical record of cancer, and no family history of cancer (1st & 2nd degree relatives) HPFS: Nested case-control. Source of cases: Participants of the HPFS cohort. Source of controls: Participants of the HPFS cohort IMPACT: Observational. Source of cases: Carriers and non-carriers (with a known mutation in the family) of the BRCA1 and BRCA2 genes, aged between 40 and 69, who are undergoing prostate screening with annual PSA testing. This cohort has been diagnosed with prostate cancer during the study. Source of controls: Carriers and non-carriers (with a known mutation in the family) of the BRCA1 and BRCA2 genes, aged between 40 and 69, who are undergoing prostate screening with annual PSA testing. This cohort has not been diagnosed with prostate cancer during the study. IPO-Porto: Hospital-based. Source of cases: Early onset and/or familial prostate cancer. Source of controls: Blood donors Karuprostate: Case-control, Retrospective, Population-based. Source of cases: From FWI (Guadeloupe): 237 consecutive incident patients with histologically confirmed prostate cancer attending public and private urology clinics; From Democratic Republic of Congo: 148 consecutive incident patients with histologically confirmed prostate cancer attending the University Clinic of Kinshasa. Source of controls: From FWI (Guadeloupe): 277 controls recruited from men participating in a free systematic health screening program open to the general population; From Democratic Republic of Congo: 134 controls recruited from subjects attending the University Clinic of Kinshasa KULEUVEN: Hospital-based, Prospective, Observational. Source of cases: Prostate cancer cases recruited at the University Hospital Leuven. Source of controls: Healthy males with no history of prostate cancer recruited at the University Hospitals, Leuven. LAAPC: Subjects were participants in a population-based case-control study of aggressive prostate cancer conducted in Los Angeles County. Cases were identified through the Los Angeles County Cancer Surveillance Program rapid case ascertainment system. Eligible cases included African American, Hispanic, and non-Hispanic White men diagnosed with a first primary prostate cancer between January 1, 1999 and December 31, 2003. Eligible cases also had (a) prostatectomy with documented tumor extension outside the prostate, (b) metastatic prostate cancer in sites other than prostate, (c) needle biopsy of the prostate with Gleason grade ≥8, or (d) needle biopsy with Gleason grade 7 and tumor in more than two thirds of the biopsy cores. Eligible controls were men never diagnosed with prostate cancer, living in the same neighborhood as a case, and were frequency matched to cases on age (± 5 y) and race/ethnicity. Controls were identified by a neighborhood walk algorithm, which proceeds through an obligatory sequence of adjacent houses or residential units beginning at a specific residence that has a specific geographic relationship to the residence where the case lived at diagnosis. Malaysia: Case-control. Source of cases: Patients attended the outpatient urology or uro-onco clinic at University Malaya Medical Center. Source of controls: Population-based, age matched (5-year groups), ascertained through electoral register, Subang Jaya, Selangor, Malaysia MCC-Spain: Case-control. Source of cases: Identified through the urology departments of the participating hospitals. Source of controls: Population-based, frequency age and region matched, ascertained through the rosters of the primary health care centers MCCS: Nested case-control, Melbourne, Victoria. Source of cases: Identified by linkage to the Victorian Cancer Registry. Source of controls: Cohort participants without a diagnosis of cancer MD Anderson: Participants in this study were identified from epidemiological prostate cancer studies conducted at the University of Texas MD Anderson Cancer Center in the Houston Metropolitan area. Cases were accrued in the Houston Medical Center and were not restricted with respect to Gleason score, stage or PSA. Controls were identified via random-digit-dialing or among hospital visitors and they were frequency matched to cases on age and race. Lifestyle, demographic, and family history data were collected using a standardized questionnaire. MDACC_AS: A prospective cohort study. Source of cases: Men with clinically organ-confined prostate cancer meeting eligibility criteria for a prospective cohort study of active surveillance at MD Anderson Cancer Center. Source of controls: N/A MEC: The Multiethnic Cohort (MEC) is comprised of over 215,000 men and women recruited from Hawaii and the Los Angeles area between 1993 and 1996. Between 1995 and 2006, over 65,000 blood samples were collected from participants for genetic analyses. To identify incident cancer cases, the MEC was cross-linked with the population-based Surveillance, Epidemiology and End Results (SEER) registries in California and Hawaii, and unaffected cohort participants with blood samples were selected as controls MIAMI (WFPCS): Prostate cancer cases and controls were recruited from the Departments of Urology and Internal Medicine of the Wake Forest University School of Medicine using sequential patient populations as described previously (PMID:15342424). All study subjects received a detailed description of the study protocol and signed their informed consent, as approved by the medical center's Institutional Review Board. The general eligibility criteria were (i) able to comprehend informed consent and (ii) without previously diagnosed cancer. The exclusion criteria were (i) clinical diagnosis of autoimmune diseases; (ii) chronic inflammatory conditions; and (iii) infections within the past 6 weeks. Blood samples were collected from all subjects. MOFFITT: Hospital-based. Source of cases: clinic based from Moffitt Cancer Center. Source of controls: Moffitt Cancer Center affiliated Lifetime cancer screening center NMHS: Case-control, clinic based, Nashville TN. Source of cases: All urology clinics in Nashville, TN. Source of controls: Men without prostate cancer at prostate biopsy. PCaP: The North Carolina-Louisiana Prostate Cancer Project (PCaP) is a multidisciplinary population-based case-only study designed to address racial differences in prostate cancer through a comprehensive evaluation of social, individual and tumor level influences on prostate cancer aggressiveness. PCaP enrolled approximately equal numbers of African Americans and Caucasian Americans with newly-diagnosed prostate cancer from North Carolina (42 counties) and Louisiana (30 parishes) identified through state tumor registries. African American PCaP subjects with DNA, who agreed to future use of specimens for research, participated in OncoArray analysis. PCMUS: Case-control - Sofia, Bulgaria. Source of cases: Patients of Clinic of Urology, Alexandrovska University Hospital, Sofia, Bulgaria, PrCa histopathologically confirmed. Source of controls: 72 patients with verified BPH and PSA<3,5; 78 healthy controls from the MMC Biobank, no history of PrCa PHS: Nested case-control. Source of cases: Participants of the PHS1 trial/cohort. Source of controls: Participants of the PHS1 trial/cohort PLCO: Nested case-control. Source of cases: Men with a confirmed diagnosis of prostate cancer from the PLCO Cancer Screening Trial. Source of controls: Controls were men enrolled in the PLCO Cancer Screening Trial without a diagnosis of cancer at the time of case ascertainment. Poland: Case-control. Source of cases: men with unselected prostate cancer, diagnosed in north-western Poland at the University Hospital in Szczecin. Source of controls: cancer-free men from the same population, taken from the healthy adult patients of family doctors in the Szczecin region PROCAP: Population-based, Retrospective, Observational. Source of cases: Cases were ascertained from the National Prostate Cancer Register of Sweden Follow-Up Study, a retrospective nationwide cohort study of patients with localized prostate cancer. Source of controls: Controls were selected among men referred for PSA testing in laboratories in Stockholm County, Sweden, between 2010 and 2012. PROGReSS: Hospital-based, Prospective, Observational. Source of cases: Prostate cancer cases from the Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain. Source of controls: Cancer-free men from the same population ProMPT: A study to collect samples and data from subjects with and without prostate cancer. Retrospective, Experimental. Source of cases: Subjects attending outpatient clinics in hospitals. Source of controls: Subjects attending outpatient clinics in hospitals ProtecT: Trial of treatment. Samples taken from subjects invited for PSA testing from the community at nine centers across United Kingdom. Source of cases: Subjects who have a proven diagnosis of prostate cancer following testing. Source of controls: Identified through invitation of subjects in the community. PROtEuS: Case-control, population-based. Source of cases: All new histologically-confirmed cases, aged less or equal to 75 years, diagnosed between 2005 and 2009, actively ascertained across Montreal French hospitals. Source of controls: Randomly selected from the Provincial electoral list of French-speaking men between 2005 and 2009, from the same area of residence as cases and frequency-matched on age. QLD: Case-control. Source of cases: A longitudinal cohort study (Prostate Cancer Supportive Care and Patient Outcomes Project: ProsCan) conducted in Queensland, through which men newly diagnosed with prostate cancer from 26 private practices and 10 public hospitals were directly referred to ProsCan at the time of diagnosis by their treating clinician (age range 43-88 years). All cases had histopathologically confirmed prostate cancer, following presentation with an abnormal serum PSA and/or lower urinary tract symptoms. Source of controls: Controls comprised healthy male blood donors with no personal history of prostate cancer, recruited through (i) the Australian Red Cross Blood Services in Brisbane (age range 19-76 years) and (ii) the Australian Electoral Commission (AEC) (age and post-code/ area matched to ProsCan, age range 54-90 years). RAPPER: Multi-centre, hospital based blood sample collection study in patients enrolled in clinical trials with prospective collection of radiotherapy toxicity data. Source of cases: Prostate cancer patients enrolled in radiotherapy trials: CHHiP, RT01, Dose Escalation, RADICALS, Pelvic IMRT, PIVOTAL. Source of controls: N/A SABOR: Prostate Cancer Screening Cohort. Source of cases: Men >45 yrs of age participating in annual PSA screening. Source of controls: Males participating in annual PSA prostate cancer risk evaluations (funded by NCI biomarkers discovery and validation grant), recruited through University of Texas Health Science Center at San Antonio and affiliated sites or through study advertisements, enrolment open to the community SCCS: Case-control in cohort, Southeastern USA. Prospective, Observational, Population-based. Source of cases: SCCS entry population. Source of controls: SCCS entry population SCPCS: Population-based, Retrospective, Observational. Source of cases: South Carolina Central Cancer Registry. Source of controls: Health Care Financing Administration beneficiary file SEARCH: Case-control - East Anglia, UK. Source of cases: Men < 70 years of age registered with prostate cancer at the population-based cancer registry, Eastern Cancer Registration and Information Centre, East Anglia, UK. Source of controls: Men attending general practice in East Anglia with no known prostate cancer diagnosis, frequency matched to cases by age and geographic region SNP_Prostate_Ghent: Hospital-based, Retrospective, Observational. Source of cases: Men treated with IMRT as primary or postoperative treatment for prostate cancer at the Ghent University Hospital between 2000 and 2010. Source of controls: Employees of the University hospital and members of social activity clubs, without a history of any cancer. SPAG: Hospital-based, Retrospective, Observational. Source of cases: Guernsey. Source of controls: Guernsey STHM2: Population-based, Retrospective, Observational. Source of cases: Cases were selected among men referred for PSA testing in laboratories in Stockholm County, Sweden, between 2010 and 2012. Source of controls: Controls were selected among men referred for PSA testing in laboratories in Stockholm County, Sweden, between 2010 and 2012. PCPT: Case-control from a randomized clinical trial. Source of cases: Randomized clinical trial. Source of controls: Randomized clinical trial SELECT: Case-cohort from a randomized clinical trial. Source of cases: Randomized clinical trial. Source of controls: Randomized clinical trial TAMPERE: Case-control - Finland, Retrospective, Observational, Population-based. Source of cases: Identified through linkage to the Finnish Cancer Registry and patient records; and the Finnish arm of the ERSPC study. Source of controls: Cohort participants without a diagnosis of cancer UGANDA: Uganda Prostate Cancer Study: Uganda is a case-control study of prostate cancer in Kampala Uganda that was initiated in 2011. Men with prostate cancer were enrolled from the Urology unit at Mulago Hospital and men without prostate cancer (i.e. controls) were enrolled from other clinics (i.e. surgery) at the hospital. UKGPCS: ICR, UK. Source of cases: Cases identified through clinics at the Royal Marsden hospital and nationwide NCRN hospitals. Source of controls: Ken Muir's control- 2000 ULM: Case-control - Germany. Source of cases: familial cases (n=162): identified through questionnaires for family history by collaborating urologists all over Germany; sporadic cases (n=308): prostatectomy series performed in the Clinic of Urology Ulm between 2012 and 2014. Source of controls: age-matched controls (n=188): age-matched men without prostate cancer and negative family history collected in hospitals of Ulm WUGS/WUPCS: Cases Series, USA. Source of cases: Identified through clinics at Washington University in St. Louis. Source of controls: Men diagnosed and managed with prostate cancer in University based clinic. Acknowledgement Statements: Aarhus: This study was supported by the Danish Strategic Research Council (now Innovation Fund Denmark) and the Danish Cancer Society. The Danish Cancer Biobank (DCB) is acknowledged for biological material. AHS: This work was supported by the Intramural Research Program of the NIH, National Cancer Institute, Division of Cancer Epidemiology and Genetics (Z01CP010119). ATBC: This research was supported in part by the Intramural Research Program of the NIH and the National Cancer Institute. Additionally, this research was supported by U.S. Public Health Service contracts N01-CN-45165, N01-RC-45035, N01-RC-37004, HHSN261201000006C, and HHSN261201500005C from the National Cancer Institute, Department of Health and Human Services. BioVu: The dataset(s) used for the analyses described were obtained from Vanderbilt University Medical Center's BioVU which is supported by institutional funding and by the National Center for Research Resources, Grant UL1 RR024975-01 (which is now at the National Center for Advancing Translational Sciences, Grant 2 UL1 TR000445-06). Canary PASS: PASS was supported by Canary Foundation and the National Cancer Institute's Early Detection Research Network (U01 CA086402) CCI: This work was awarded by Prostate Cancer Canada and is proudly funded by the Movember Foundation - Grant # D2013-36.The CCI group would like to thank David Murray, Razmik Mirzayans, and April Scott for their contribution to this work. CerePP French Prostate Cancer Case-Control Study (ProGene): None reported COH: SLN is partially supported by the Morris and Horowitz Families Endowed Professorship COSM: The Swedish Research Council, the Swedish Cancer Foundation CPCS1 & CPCS2: Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev Ringvej 75, DK-2730 Herlev, DenmarkCPCS1 would like to thank the participants and staff of the Copenhagen General Population Study for their important contributions. CPDR: Uniformed Services University for the Health Sciences HU0001-10-2-0002 (PI: David G. McLeod, MD) CPS-II: The American Cancer Society funds the creation, maintenance, and updating of the Cancer Prevention Study II cohort. CPS-II thanks the participants and Study Management Group for their invaluable contributions to this research. We would also like to acknowledge the contribution to this study from central cancer registries supported through the Centers for Disease Control and Prevention National Program of Cancer Registries, and cancer registries supported by the National Cancer Institute Surveillance Epidemiology and End Results program. EPIC: The coordination of EPIC is financially supported by the European Commission (DG-SANCO) and the International Agency for Research on Cancer. The national cohorts are supported by the Danish Cancer Society (Denmark); the Deutsche Krebshilfe, Deutsches Krebsforschungszentrum and Federal Ministry of Education and Research (Germany); the Hellenic Health Foundation, Greek Ministry of Health; Greek Ministry of Education (Greece); the Italian Association for Research on Cancer (AIRC) and National Research Council (Italy); the Dutch Ministry of Public Health, Welfare and Sports (VWS), Netherlands Cancer Registry (NKR), LK Research Funds, Dutch Prevention Funds, Dutch ZON (Zorg Onderzoek Nederland), World Cancer Research Fund (WCRF); the Statistics Netherlands (The Netherlands); the Health Research Fund (FIS), Regional Governments of Andalucía, Asturias, Basque Country, Murcia and Navarra, Spanish Ministry of Health ISCIII RETIC (RD06/0020), Red de Centros RCESP, C03/09 (Spain); the Swedish Cancer Society, Swedish Scientific Council and Regional Government of Skåne and Västerbotten, Fundacion Federico SA (Sweden); the Cancer Research UK, Medical Research Council (United Kingdom). EPICAP: The EPICAP study was supported by grants from Ligue Nationale Contre le Cancer, Ligue départementale du Val de Marne; Fondation de France; Agence Nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES). The EPICAP study group would like to thank all urologists, Antoinette Anger and Hasina Randrianasolo (study monitors), Anne-Laure Astolfi, Coline Bernard, Oriane Noyer, Marie-Hélène De Campo, Sandrine Margaroline, Louise N'Diaye, and Sabine Perrier-Bonnet (Clinical Research nurses). ERSPC: This study was supported by the DutchCancerSociety (KWF94-869,98-1657,2002-277,2006-3518, 2010-4800), The Netherlands Organisation for Health Research and Development (ZonMW-002822820, 22000106, 50-50110-98-311, 62300035), The Dutch Cancer Research Foundation (SWOP), and an unconditional grant from Beckman-Coulter-HybritechInc. ESTHER: The ESTHER study was supported by a grant from the Baden Württemberg Ministry of Science, Research and Arts. The ESTHER group would like to thank Hartwig Ziegler, Sonja Wolf, Volker Hermann, Heiko Müller, Karina Dieffenbach, Katja Butterbach for valuable contributions to the study. FHCRC: The FHCRC studies were supported by grants R01-CA056678, R01-CA082664, and R01-CA092579 from the US National Cancer Institute, National Institutes of Health, with additional support from the Fred Hutchinson Cancer Research Center. FHCRC would like to thank all the men who participated in these studies. Gene-PARE: The Gene-PARE study was supported by grants 1R01CA134444 from the U.S. National Institutes of Health, PC074201 and W81XWH-15-1-0680 from the Prostate Cancer Research Program of the Department of Defense and RSGT-05-200-01-CCE from the American Cancer Society. Hamburg-Zagreb: None reported HPFS: The Health Professionals Follow-up Study was supported by grants UM1CA167552, CA133891, CA141298, and P01CA055075. HPFS are grateful to the participants and staff of the Physicians' Health Study and Health Professionals Follow-Up Study for their valuable contributions, as well as the following state cancer registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, and WY. IMPACT: The IMPACT study was funded by The Ronald and Rita McAulay Foundation, CR-UK Project grant (C5047/A1232), Cancer Australia, AICR Netherlands A10-0227, Cancer Australia and Cancer Council Tasmania, NIHR, EU Framework 6, Cancer Councils of Victoria and South Australia, and Philanthropic donation to Northshore University Health System. We acknowledge support from the National Institute for Health Research (NIHR) to the Biomedical Research Centre at The Institute of Cancer Research and Royal Marsden Foundation NHS Trust. IMPACT acknowledges the IMPACT study steering committee, collaborating centres, and participants. IPO-Porto: The IPO-Porto study was funded by Fundaçäo para a Ciência e a Tecnologia (FCT; UID/DTP/00776/2013 and PTDC/DTP-PIC/1308/2014) and by IPO-Porto Research Center (CI-IPOP-16-2012 and CI-IPOP-24-2015). MC and MPS are research fellows from Liga Portuguesa Contra o Cancro, Núcleo Regional do Norte. SM is a research fellow from FCT (SFRH/BD/71397/2010). IPO-Porto would like to express our gratitude to all patients and families who have participated in this study. Karuprostate: The Karuprostate study was supported by the the Frech National Health Directorate and by the Association pour la Recherche sur les Tumeurs de la ProstateKarusprostate thanks Séverine Ferdinand. KULEUVEN: F.C. and S.J. are holders of grants from FWO Vlaanderen (G.0684.12N and G.0830.13N), the Belgian federal government (National Cancer Plan KPC_29_023), and a Concerted Research Action of the KU Leuven (GOA/15/017). TVDB is holder of a doctoral fellowship of the FWO. LAAPC: This study was funded by grant R01CA84979 (to S.A. Ingles) from the National Cancer Institute, National Institutes of Health. Malaysia: The study was funded by the University Malaya High Impact Research Grant (HIR/MOHE/MED/35). Malaysia thanks all associates in the Urology Unit, University of Malaya, Cancer Research Initiatives Foundation (CARIF) and the Malaysian Men's Health Initiative (MMHI). MCCS: MCCS cohort recruitment was funded by VicHealth and Cancer Council Victoria. The MCCS was further supported by Australian NHMRC grants 209057, 251553, and 504711, and by infrastructure provided by Cancer Council Victoria. Cases and their vital status were ascertained through the Victorian Cancer Registry (VCR) and the Australian Institute of Health and Welfare (AIHW), including the National Death Index and the Australian Cancer Database. MCC-Spain: The study was partially funded by the Accion Transversal del Cancer, approved on the Spanish Ministry Council on the 11th October 2007, by the Instituto de Salud Carlos III-FEDER (PI08/1770, PI09/00773-Cantabria, PI11/01889-FEDER, PI12/00265, PI12/01270, and PI12/00715), by the Fundación Marqués de Valdecilla (API 10/09), by the Spanish Association Against Cancer (AECC) Scientific Foundation and by the Catalan Government DURSI grant 2009SGR1489. Samples: Biological samples were stored at the Parc de Salut MAR Biobank (MARBiobanc; Barcelona) which is supported by Instituto de Salud Carlos III FEDER (RD09/0076/00036). Also sample collection was supported by the Xarxa de Bancs de Tumors de Catalunya sponsored by Pla Director d'Oncologia de Catalunya (XBTC). MCC-Spain acknowledges the contribution from Esther Gracia-Lavedan in preparing the data. We thank all the subjects who participated in the study and all MCC-Spain collaborators. MD Anderson: Prostate Cancer Case-Control Studies at MD Anderson (MDA) supported by grants CA68578, ES007784, DAMD W81XWH-07-1-0645, and CA140388. MDACC_AS: None reported MEC: Funding provided by NIH grant U19CA148537 and grant U01CA164973. MIAMI (WFPCS): ACS MOFFITT: The Moffitt group was supported by the US National Cancer Institute (R01CA128813, PI: J.Y. Park). NMHS: Funding for the Nashville Men's Health Study (NMHS) was provided by the National Institutes of Health Grant numbers: RO1CA121060. PCaP only data: The North Carolina - Louisiana Prostate Cancer Project (PCaP) is carried out as a collaborative study supported by the Department of Defense contract DAMD 17-03-2-0052. For HCaP-NC follow-up data: The Health Care Access and Prostate Cancer Treatment in North Carolina (HCaP-NC) study is carried out as a collaborative study supported by the American Cancer Society award RSGT-08-008-01-CPHPS. For studies using both PCaP and HCaP-NC follow-up data please use: The North Carolina - Louisiana Prostate Cancer Project (PCaP) and the Health Care Access and Prostate Cancer Treatment in North Carolina (HCaP-NC) study are carried out as collaborative studies supported by the Department of Defense contract DAMD 17-03-2-0052 and the American Cancer Society award RSGT-08-008-01-CPHPS, respectively. For any PCaP data, please include: The authors thank the staff, advisory committees and research subjects participating in the PCaP study for their important contributions. For studies using PCaP DNA/genotyping data, please include: We would like to acknowledge the UNC BioSpecimen Facility and LSUHSC Pathology Lab for our DNA extractions, blood processing, storage and sample disbursement (https://genome.unc.edu/bsp). For studies using PCaP tissue, please include: We would like to acknowledge the RPCI Department of Urology Tissue Microarray and Immunoanalysis Core for our tissue processing, storage and sample disbursement. For studies using HCaP-NC follow-up data, please use: The Health Care Access and Prostate Cancer Treatment in North Carolina (HCaP-NC) study is carried out as a collaborative study supported by the American Cancer Society award RSGT-08-008-01-CPHPS. The authors thank the staff, advisory committees and research subjects participating in the HCaP-NC study for their important contributions. For studies that use both PCaP and HCaP-NC, please use: The authors thank the staff, advisory committees and research subjects participating in the PCaP and HCaP-NC studies for their important contributions. PCMUS: The PCMUS study was supported by the Bulgarian National Science Fund, Ministry of Education and Science (contract DOO-119/2009; DUNK01/2-2009; DFNI-B01/28/2012) with additional support from the Science Fund of Medical University - Sofia (contract 51/2009; 8I/2009; 28/2010). PHS: The Physicians' Health Study was supported by grants CA34944, CA40360, CA097193, HL26490, and HL34595. PHS members are grateful to the participants and staff of the Physicians' Health Study and Health Professionals Follow-Up Study for their valuable contributions, as well as the following state cancer registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, and WY. PLCO: This PLCO study was supported by the Intramural Research Program of the Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIHPLCO thanks Drs. Christine Berg and Philip Prorok, Division of Cancer Prevention at the National Cancer Institute, the screening center investigators and staff of the PLCO Cancer Screening Trial for their contributions to the PLCO Cancer Screening Trial. We thank Mr. Thomas Riley, Mr. Craig Williams, Mr. Matthew Moore, and Ms. Shannon Merkle at Information Management Services, Inc., for their management of the data and Ms. Barbara O'Brien and staff at Westat, Inc. for their contributions to the PLCO Cancer Screening Trial. We also thank the PLCO study participants for their contributions to making this study possible. Poland: None reported PROCAP: PROCAP was supported by the Swedish Cancer Foundation (08-708, 09-0677). PROCAP thanks and acknowledges all of the participants in the PROCAP study. We thank Carin Cavalli-Björkman and Ami Rönnberg Karlsson for their dedicated work in the collection of data. Michael Broms is acknowledged for his skilful work with the databases. KI Biobank is acknowledged for handling the samples and for DNA extraction. We acknowledge The NPCR steering group: Pär Stattin (chair), Anders Widmark, Stefan Karlsson, Magnus Törnblom, Jan Adolfsson, Anna Bill-Axelson, Ove Andrén, David Robinson, Bill Pettersson, Jonas Hugosson, Jan-Erik Damber, Ola Bratt, Göran Ahlgren, Lars Egevad, and Roy Ehrnström. PROGReSS: The PROGReSS study is founded by grants from the Spanish Ministry of Health (INT15/00070; INT16/00154; FIS PI10/00164, FIS PI13/02030; FIS PI16/00046); the Spanish Ministry of Economy and Competitiveness (PTA2014-10228-I), and Fondo Europeo de Desarrollo Regional (FEDER 2007-2013). ProMPT: Founded by CRUK, NIHR, MRC, Cambride Biomedical Research Centre ProtecT: Founded by NIHR. ProtecT and ProMPT would like to acknowledge the support of The University of Cambridge, Cancer Research UK. Cancer Research UK grants (C8197/A10123) and (C8197/A10865) supported the genotyping team. We would also like to acknowledge the support of the National Institute for Health Research which funds the Cambridge Bio-medical Research Centre, Cambridge, UK. We would also like to acknowledge the support of the National Cancer Research Prostate Cancer: Mechanisms of Progression and Treatment (PROMPT) collaborative (grant code G0500966/75466) which has funded tissue and urine collections in Cambridge. We are grateful to staff at the Welcome Trust Clinical Research Facility, Addenbrooke's Clinical Research Centre, Cambridge, UK for their help in conducting the ProtecT study. We also acknowledge the support of the NIHR Cambridge Biomedical Research Centre, the DOH HTA (ProtecT grant), and the NCRI/MRC (ProMPT grant) for help with the bio-repository. The UK Department of Health funded the ProtecT study through the NIHR Health Technology Assessment Programme (projects 96/20/06, 96/20/99). The ProtecT trial and its linked ProMPT and CAP (Comparison Arm for ProtecT) studies are supported by Department of Health, England; Cancer Research UK grant number C522/A8649, Medical Research Council of England grant number G0500966, ID 75466, and The NCRI, UK. The epidemiological data for ProtecT were generated though funding from the Southwest National Health Service Research and Development. DNA extraction in ProtecT was supported by USA Dept of Defense award W81XWH-04-1-0280, Yorkshire Cancer Research and Cancer Research UK. The authors would like to acknowledge the contribution of all members of the ProtecT study research group. The views and opinions expressed therein are those of the authors and do not necessarily reflect those of the Department of Health of England. The bio-repository from ProtecT is supported by the NCRI (ProMPT) Prostate Cancer Collaborative and the Cambridge BMRC grant from NIHR. We thank the National Institute for Health Research, Hutchison Whampoa Limited, the Human Research Tissue Bank (Addenbrooke's Hospital), and Cancer Research UK. PROtEuS: PROtEuS was supported financially through grants from the Canadian Cancer Society (13149, 19500, 19864, 19865) and the Cancer Research Society, in partnership with the Ministère de l'enseignement supérieur, de la recherche, de la science et de la technologie du Québec, and the Fonds de la recherche du Québec - Santé.PROtEuS would like to thank its collaborators and research personnel, and the urologists involved in subjects recruitment. We also wish to acknowledge the special contribution made by Ann Hsing and Anand Chokkalingam to the conception of the genetic component of PROtEuS. QLD: The QLD research is supported by The National Health and Medical Research Council (NHMRC) Australia Project Grants (390130, 1009458) and NHMRC Career Development Fellowship and Cancer Australia PdCCRS funding to J Batra. The QLD team would like to acknowledge and sincerely thank the urologists, pathologists, data managers and patient participants who have generously and altruistically supported the QLD cohort. RAPPER: RAPPER is funded by Cancer Research UK (C1094/A11728; C1094/A18504) and Experimental Cancer Medicine Centre funding (C1467/A7286). The RAPPER group thank Rebecca Elliott for project management. SABOR: The SABOR research is supported by NIH/NCI Early Detection Research Network, grant U01 CA0866402-12. Also supported by the Cancer Center Support Grant to the Cancer Therapy and Research Center from the National Cancer Institute (US) P30 CA054174. SCCS: SCCS is funded by NIH grant R01 CA092447, and SCCS sample preparation was conducted at the Epidemiology Biospecimen Core Lab that is supported in part by the Vanderbilt-Ingram Cancer Center (P30 CA68485). Data on SCCS cancer cases used in this publication were provided by the Alabama Statewide Cancer Registry; Kentucky Cancer Registry, Lexington, KY; Tennessee Department of Health, Office of Cancer Surveillance; Florida Cancer Data System; North Carolina Central Cancer Registry, North Carolina Division of Public Health; Georgia Comprehensive Cancer Registry; Louisiana Tumor Registry; Mississippi Cancer Registry; South Carolina Central Cancer Registry; Virginia Department of Health, Virginia Cancer Registry; Arkansas Department of Health, Cancer Registry, 4815 W. Markham, Little Rock, AR 72205. The Arkansas Central Cancer Registry is fully funded by a grant from National Program of Cancer Registries, Centers for Disease Control and Prevention (CDC). Data on SCCS cancer cases from Mississippi were collected by the Mississippi Cancer Registry which participates in the National Program of Cancer Registries (NPCR) of the Centers for Disease Control and Prevention (CDC). The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of the CDC or the Mississippi Cancer Registry. SCPCS: SCPCS is funded by CDC grant S1135-19/19, and SCPCS sample preparation was conducted at the Epidemiology Biospecimen Core Lab that is supported in part by the Vanderbilt-Ingram Cancer Center (P30 CA68485). SEARCH: SEARCH is funded by a program grant from Cancer Research UK (C490/A10124) and supported by the UK National Institute for Health Research Biomedical Research Centre at the University of Cambridge. SNP_Prostate_Ghent: The study was supported by the National Cancer Plan, financed by the Federal Office of Health and Social Affairs, Belgium. SPAG: Wessex Medical ResearchHope for Guernsey, MUG, HSSD, MSG, Roger Allsopp STHM2: STHM2 was supported by grants from The Strategic Research Programme on Cancer (StratCan), Karolinska Institutet; the Linné Centre for Breast and Prostate Cancer (CRISP, number 70867901), Karolinska Institutet; The Swedish Research Council (number K2010-70X-20430-04-3) and The Swedish Cancer Society (numbers 11-0287 and 11-0624); Stiftelsen Johanna Hagstrand och Sigfrid Linnérs minne; Swedish Council for Working Life and Social Research (FAS), number 2012-0073STHM2 acknowledges the Karolinska University Laboratory, Aleris Medilab, Unilabs and the Regional Prostate Cancer Registry for performing analyses and help to retrieve data. Carin Cavalli-Björkman and Britt-Marie Hune for their enthusiastic work as research nurses. Astrid Björklund for skilful data management. We wish to thank the BBMRI.se biobank facility at Karolinska Institutet for biobank services. PCPT & SELECT are funded by Public Health Service grants U10CA37429 and 5UM1CA182883 from the National Cancer Institute. SWOG and SELECT thank the site investigators and staff and, most importantly, the participants who donated their time to this trial. TAMPERE: The Tampere (Finland) study was supported by the Academy of Finland (251074), The Finnish Cancer Organisations, Sigrid Juselius Foundation, and the Competitive Research Funding of the Tampere University Hospital (X51003). The PSA screening samples were collected by the Finnish part of ERSPC (European Study of Screening for Prostate Cancer). TAMPERE would like to thank Riina Liikanen, Liisa Maeaettaenen and Kirsi Talala for their work on samples and databases. UGANDA: None reported UKGPCS: UKGPCS would also like to thank the following for funding support: The Institute of Cancer Research and The Everyman Campaign, The Prostate Cancer Research Foundation, Prostate Research Campaign UK (now Prostate Action), The Orchid Cancer Appeal, The National Cancer Research Network UK, The National Cancer Research Institute (NCRI) UK. We are grateful for support of NIHR funding to the NIHR Biomedical Research Centre at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust. UKGPCS should also like to acknowledge the NCRN nurses, data managers, and consultants for their work in the UKGPCS study. UKGPCS would like to thank all urologists and other persons involved in the planning, coordination, and data collection of the study. ULM: The Ulm group received funds from the German Cancer Aid (Deutsche Krebshilfe). WUGS/WUPCS: WUGS would like to thank the following for funding support: The Anthony DeNovi Fund, the Donald C. McGraw Foundation, and the St. Louis Men's Group Against Cancer.
(Excerpted/paraphrased from original grant application): FOCI seeks to expand our understanding of epithelial ovarian cancer through a coordinated and comprehensive approach. Project 1 will focus on discovery, expansion, and replication. By pooling GWAS, we expect to identify new associations and achieve independent replication, explore whether there are risk variants specific for histologic subtypes, and evaluate structural polymorphisms - copy number variants - as risk factors. Finally, Project 1 will leverage the GWAS data to correlate DNA variants with a new endpoint - survival. Project 2 will focus on biological studies designed to help inform interpretation of findings from Project 1. This will include efforts to identify the functional consequences of variants and improve understanding of biological mechanisms. Project 3 will include epidemiologic studies of gene by gene interaction, gene by environment interaction, and development of risk prediction models. The collective effort builds upon the strengths and history of collaboration inherent in the Ovarian Cancer Association Consortium (OCAC), a multidisciplinary group comprised of epidemiologists, genetic epidemiologists, statistical geneticists, molecular and cell biologists and clinicians that was formed in 2005. The FOCI Cohort is utilized in the following dbGaP sub-studies. To view genotypes, other molecular data, and derived variables collected in these sub-studies, please click on the following sub-studies below or in the "Sub-studies" box located on the right hand side of this top-level study page phs001133 FOCI Cohort. phs001131 Affymetrix Exome Chip phs001132 GWAS Meta Analysis phs001142 Mayo Omni Express phs001150 Mayo 2 5M
Preterm birth (PTB, born before 37 weeks of gestation) is a leading cause of neonatal mortality and post-natal morbidity. PTB affects one in nine all live births in the U.S. Notably, the highest rate of PTB occurs among African Americans (one in six). PTB is a complex trait, likely determined by multiple environmental and genetic factors and their interactions. We demonstrated strong familial aggregation of preterm and low birthweight in the US Blacks and Whites (Wang et al, NEJM, 1995) and conducted the largest candidate gene study of preterm birth at that time (Hao et al, HMG, 2004). We showed that a subset of mothers with certain metabolic gene variants are particularly vulnerable to the adverse effects of cigarette smoking on low birthweight and preterm births (Wang et al, JAMA, 2002). We also published a number of papers that examined the effect of maternal pre-pregnancy BMI, micronutrient status, stress and environmental toxins on the risk of preterm birth and related conditions. This project, supported by a grant from the NICHD (2R01HD41702, PI, Xiaobin Wang), aimed to conduct a genome-wide association study (GWAS) and apply advanced statistical methods to identify susceptibility loci of PTB in a predominantly urban low-income African American sample, a subset of the Boston Birth Cohort. PUBLIC HEALTH REVELANCE: We anticipate that this study will lead to the identification of novel genetic loci of PTB and gene-environment interactions. Such findings not only will provide important insights into mechanisms leading to PTB, but also may help identify women at high-risk of PTB, which in turn, may lead to the development of early and targeted interventions that can prevent PTB or mitigate the severity and consequences of PTB.