The genetic etiology of amyotrophic lateral sclerosis (ALS) is not well understood. Finland has one of the highest incidence of ALS in the world, making it an ideal population for study. To identify genetic risk factors for this fatal neurodegenerative disease, we undertook a genome-wide association study of 405 Finnish patients diagnosed with ALS and 497 Finnish controls. Two loci that exceeded the Bonferroni threshold for genome-wide significance were identified. One was located on chromosome 21q22, corresponding to the known autosomal recessive D90A allele of the SOD1 gene. The other was detected on the short arm of chromosome 9, which had been previously identified in linkage studies of families with ALS. Together, these two loci account for most of the increased incidence of ALS observed in this population.
The study examined WES of der(1;7)(q10;p10) myeloid neoplasm cases. BAM files of WES of 26 myeloid neoplasm patients with der(1;7)(q10;p10) were used to identify key driver genes in patients with der(1;7)(q10;p10). This study is one of the largest WES for der(1;7)(q10;p10)(+) myeloid neoplasm cases.
We report one case study of a malignant granular cell tumor patient with metabolic response to pazopanib. In this study, we used whole-genome sequencing of the tumor with the matched blood to characterize the somatic mutation profile in this tumor. This is the first reported whole-genome sequencing study of the rare malignant granular cell tumor.
Programmatic submissions (XML based) For further information please check our Submission FAQs, submission quickguide as well as submission terms! Introduction Besides the Submitter Portal tool, EGA supports programmatic sequence and clinical data metadata submissions. If you are not sure what this means, you may want to explore our brief metadata introduction. Programmatic submissions are recommended for array-based submission. Moreove, it may be of help if your submission is recurrent or it is difficult to manage manually due to its sheer size. Otherwise, we highly recommend using the Submitter Portal to perform submissions. In this page we will guide you through the required steps to programmatically submit data to the EGA. Programmatic submissions require your metadata to be structured for an easy and straightforward validation and archival. It basically consists in formatting your metadata as Extensible markup language (XML) files and submitting them to the EGA using the WEBIN Before submitting metadata to the EGA, it is important to ensure that the information in your XML files is compliant with our standards. You can see further details on how these standards are maintained at EGA at our EGA Schemas documentation page. Using WEBIN, you can validate your XML files against EGA's schemas to ensure that your metadata is compliant before submission. WEBIN services WEBIN production service WEBIN test service We advise you to submit your metadata to the test service when submitting to the production service for the first time. The test service is identical to the production service except that all submissions will be discarded in the following 24 hours. This allows you to learn about the submission process without having to worry about data being submitted. Authentication Authentication is required each time a submission is made. The submission service uses HTTPS protocol for metadata encryption and identification to provide a secure submission environment. Data file upload Both Runs and Analyses reference files (e.g. FASTQ need to be uploaded to the EGA before these metadata objects are submitted. In other words, if you submit a Run that references a file that we cannot find associated with your account, the metadata submission will fail. See further details on how to upload your files in our File Upload documentation. Metadata model of the EGA Our metadata model is formed by multiple metadata objects. Check further details in our documentation at our EGA Schema documentation page. Working with EGA XMLs files Now that the basic concepts of the EGA metadata have been described, you can start preparing your programmatic submission through XML. Here you will find the guidance on how to prepare the XML files. Programmatic Submission Tutorial Video Take a look at the Programmatic Submission Tutorial Video, which explains the workflow of a programmatic submission and goes over an example metadata submission. Programmatic Submission Tutorial Video. When building your XML files, we recommend using text editors (e.g.Sublime Text or VisualStudio) that allow you to visualise the structure of the XML with ease. Furthermore, these editors constantly check the consistency of the XML structure. Alternatively, and if the submission consists of a big number of objects (specially analyses), you may find the tool star2xml handy. This tool allows for a direct conversion between metadata in a tabular format (e.g. a spreadsheet) into XMLs. Identifying objects: Aliases and center names Every EGA object must be uniquely identified within the submission account using their alias attribute. The aliases can be used in submissions to make references between EGA objects. Let us dig into EGA's use of aliases and center names: alias: every object should have a name that is unique within your submission account. Once submitted successfully, every alias will be assigned a unique and permanent accession (EGA ID). refname: when an object references another by its alias, the alias of the referenced object goes into the "refname" attribute of the referencing object. For example, if a sample has the alias "sample1", and an experiment uses this sample, then the experiment's "EXPERIMENT/SAMPLE/refname" attribute should be "sample1". center_name: The "center_name" attribute is required within the submission XML and, if not provided when the object is submitted, it will be automatically filled using your default EGA account center_name. This element is the "controlled vocabulary acronym or abbreviation that is provided to the account holder when the account is first generated". If the submitter is brokering a submission for another institute, the submitter should use their special broker account name in broker_name while the data centre acronym remains in center_name. Log-in details should have been provided when you requested a submission account. Please contact our Helpdesk team if you have any questions. run_center: Many submitting centers contract out the actual sample sequencing to another center. In these cases, the sequencing center should be acknowledged in the run_center attribute. Again, this is controlled vocabulary and the acronym should be sought from EGA helpdesk before submitting. Please contact our Helpdesk team if you have any questions. Prepare your XMLs The goal of this section is to provide sufficient information to be able to create the metadata XML documents required for programmatic submissions. Please note, the EGA utilises the XML schemas maintained at the European Nucleotide Archive (ENA). It is important due to the fact that by using a similar system, some pieces of documentation from the ENA's programmatic submission can also help you with your programmatic submission to the EGA. For example, you can submit programmatically without using a Submission XML by following the steps at Submission actions without submission XML. A submission does not have to contain all different types of XMLs. For example, it is possible to submit only a few samples; or a study that is later to be referenced. You can submit each object one by one, or submit all in a batch: you choose what method of submission works best for you. We do recommend, nevertheless, that you submit the objects to be referenced (e.g. samples or studies) first, and the objects that reference these (e.g. experiments or datasets) afterwards. You can see a graphical view of these objects and their relationships at our EGA Schemas page. Independently of the submission scenario, you will always require a Dataset XML. The entity of a dataset is what is used to control access to the given data, in the form of runs or analyses. In other words, when a requester is granted access, it is through the dataset and the objects (e.g. runs or analyses) that the dataset contains, granting access to them in one go. Given the nature of the EGA, a dataset XML will always be required for the data access. First, we will differentiate between submissions of "raw" and "processed" data: Runs and Analyses, respectively. Run data submissions Raw data derives from instruments "as is". For example, a plain sequence file (e.g. FASTQ or unaligned BAM files) would be considered raw data. A typical raw (unaligned) sequence read submission consists of 8 XMLs: Submission Study Sample Experiment Run DAC Policy Dataset When technical reads (e.g. barcodes, adaptors or linkers) are included in the submitted raw sequences, a spot descriptor must be submitted to describe the position of the technical reads so that they can be removed. The following data files can be submitted without providing spot descriptor information in the experiment/run XML: BAM files (single reads) SFF files (single reads without barcodes) FastQ files (single reads without any technical reads) Complete Genomics files Analysis data submissions Processed data is, in some way, refined raw data. This includes raw data that has been processed by some form of analysis method (e.g. alignment, noise reduction, etc.). For example, an aligned sequence (e.g. BAM file), that was created using raw FASTQ files, would be a processed file. This category includes most types of data: sequence alignment files (e.g. BAM or CRAM), clinical data (e.g. phenopackets), sequence variation files (e.g. VCF), sequence annotation, etc. A typical EGA analysis data submission consists of 7 EGA XML: Submission Study Sample Analysis DAC Policy Dataset We accept three different types of analysis data submissions: BAM files (for multiple read alignments) VCF files (for sequence variations) Phenotype files (in any format) In anycase, keep in mind that samples must be created in order to be referenced in the analyses. In other words, the provenance of the information within the BAM, VCF and phenotype files Example XMLs Below you can find a non-extensive list of example XMLs with descriptive fields (i.e. explaining what to provide in each field). Furthermore, you can also find real examples (i.e. the true value of the provided fields) in our GitHub repository. Submission XML The submission XML is used to validate, submit or update any number of other objects. The submission XML refers to other XMLs. New submissions use the ADD action to submit new objects. Object updates are done using the MODIFY action and objects can be validated using the VERIFY action. Descriptive submission XML example True values submission XML example Study XML The study XML is used to describe the study containing a title, a study type and abstract as it would appear in a publication. Descriptive study XML example True values study XML example Please use the following notation within the property "STUDY_LINKS" when including PubMed citations in the Study XML: <STUDY_LINKS> <STUDY_LINK> <XREF_LINK> <DB>PUBMED</DB> <ID>18987735</ID> </XREF_LINK> </STUDY_LINK> </STUDY_LINKS> Sample XML The sample XML is used to describe the samples used to obtain the data, whether they were sequenced, measured in any other way, or have an associated phenotype. The mandatory fields include information about the taxonomy of the sample, sex, subject ID and phenotype. For example, the mandatory attribute fields for each sample would look like these, within the array of "SAMPLE_ATTRIBUTES": <SAMPLE_ATTRIBUTES> <SAMPLE_ATTRIBUTE> <TAG>subject_id</TAG> <VALUE>free text!</VALUE> </SAMPLE_ATTRIBUTE> <SAMPLE_ATTRIBUTE> <TAG>sex</TAG> <VALUE>female/male/unknown</VALUE> </SAMPLE_ATTRIBUTE> <SAMPLE_ATTRIBUTE> <TAG>phenotype</TAG> <VALUE>Free text, EFO terms (e.g. EFO:0000574) are recommended</VALUE> </SAMPLE_ATTRIBUTE> </SAMPLE_ATTRIBUTES> Sample is one of the most important objects to be described biologically, it is highly recommended that “TAG-VALUE” pairs are generated as SAMPLE_ATTRIBUTES to describe the sample in as much detail as possible. For example, were we to give the population ancestry of the sample, we could add a new attribute to the array, in which, for example, we would indicate that the sample derives from an individual of "Mende in Sierra Leone" (MSL), with an african ancestry: <SAMPLE_ATTRIBUTE> <TAG>Population</TAG> <VALUE>MSL</VALUE> </SAMPLE_ATTRIBUTE> Given that VALUE and TAG are free text, the combinations are limitless in order to give you full flexibility on the information you want to provide. We recommend you use the Experimental Factor Ontology (EFO) to describe the phenotypes of your samples. You can provide more than one phenotype by adding more items to the array of SAMPLE_ATTRIBUTES. Phenotypes considered essential for understanding the data submission should be provided. Each phenotype described should be listed as a separate sample attribute <SAMPLE_ATTRIBUTE> </SAMPLE_ATTRIBUTE>. There is no limit to the number of phenotypes that can be submitted. If a suitable EFO accession cannot be found for your phenotype attribute, please consider using another controlled ontology database (e.g. HPO, MONDO, etc.) before using free text. Descriptive sample XML example True values sample XML example Experiment XML The experiment XML is used to describe the experimental setup, including instrument platform and model details, library preparation details, and any additional information required to correctly interpret the submitted data. Where any of these values differ between runs, a new experiment object must exist, since runs are grouped by experiments. Each experiment references a study and a sample by alias, or if previously-submitted, by accession. Pooled data must be demultiplexed by barcode for submission. Descriptive experiment ( Illumina paired read ) XML example True values experiment ( Illumina paired read ) XML example Run XML The run XML is used to associate data files with experiments and typically comprises a single data file (e.g. a FASTQ file). Please note that pooled samples should be de-multiplexed prior submission and submitted as different runs. Descriptive run XML example True values run XML example Analysis XML Given that an analysis can be used to submit any type of processed data to the EGA, we will list below an example of each of the three most common types of analysis XMLs submitted to the EGA: sequence alignments (e.g. BAM files); sequence variation (e.g. VCF files); and clinical metadata or phenotypes (e.g. phenopackets). Regardless of the type of processed data submitted in the analysis, the analysis must be associated with a Study and can reference multiple types of other objects, from samples to experiments, if they are available at the EGA. Just like with Runs, whenever a file is submitted to the EGA through an analysis object, the file MD5 checksums must be present, in order for the EGA to validate file integrity upon transfer. This also includes index files when applicable (e.g. .bai.md5 files). Ideally, any analysis that uses a reference sequence for some kind of alignment (e.g. BAM, CRAM or VCF files), would contain metadata about the alignment, such as INSDC reference assemblies and sequences, by either using accessions (e.g. CM000663.1) or common labels (e.g. GRCh37). Read alignment (BAM) Analysis XML The Analysis can be used to submit BAM alignments to EGA. Only one BAM file can be submitted in each analysis and the samples used within the BAM read groups must be associated with Samples. Descriptive bam alignments XML example True values bam alignments XML example Sequence variation (VCF) Analysis XML The Analysis can be used to submit VCF files to EGA. Only one VCF file can be submitted in each analysis and the samples used within the VCF files must be associated with Samples. Download analysis XML (VCF) Phenotype files The Analysis XML can be used to submit phenotype files to the EGA. Only one phenotype file can be submitted in each analysis and the samples used within the phenotype files must be associated with EGA Samples. Download analysis XML (Phenotype) DAC XML The DAC XML describes the Data Access Committee (DAC) affiliated to the data submission. The DAC may consist of a group or a single individual and is responsible for the data access decisions based on the application procedure described in the POLICY.XML. As with any other object, if it was already submitted to the EGA, there is no need to submit it again: you can reference an existing object within the EGA. Hence, A DAC XML does not need to be provided if your submission is affiliated to an existing EGA DAC.. Further information on DACs can be found here, and you can always contact our Helpdesk team if you have further inquiries. Descriptive dac XML example True values dac XML example Policy XML The Policy XML describes the Data Access Agreement (DAA) to be affiliated to the named Data Access Committee. Descriptive policy XML example True values study XML example Dataset XML The dataset XML describes the data files, defined by the Run.XML and Analysis.XML, that make up the dataset and links the collection of data files to a specified Policy. The dataset xml is commonly the last metadata object to be submitted, since it references multiple other entities. Please consider the number of datasets that your submission consists of. For example, a case-control study is likely to consist of at least two datasets. In addition, we suggest that multiple datasets should be described for studies using the same samples but different sequence technologies. Descriptive dataset XML example True values dataset XML example Validating and submitting your EGA Validating EGA's XMLs through Webin After you have ensured that the XMLs are properly formatted and contain all the required information. You can proceed to validate and submit your data. Use the curl command to validate your XML file: Once you have prepared your XML file and asserted you have access to Webin, you can validate your XML file programmatically against EGA's schemas using the curl command. There are multiple ways in which you can validate your XMLs. This variety has to do with the fact that: (1) there are 2 instances of Webin (test and production); and (2) that validation is a default step during submission. In other words, any time that you submit your data through Webin, it will be validated automatically before being accepted. This allows for 4 possible routes of validation, all having the same validation result: validating or submitting to either the production service or the test service of Webin. For example, directly validating a "study" object XML in the testing service (wwwdev…) would look like the following: curl -u <USERNAME>:<PASSWORD> -F "ACTION=VALIDATE" "https://wwwdev.ebi.ac.uk/ena/submit/drop-box/submit/" -F "STUDY=@study.xml" In this command, you would need to replace <USERNAME> and <PASSWORD> with your EGA account username and password, respectively. You would also replace <INPUT_FILE> with the path to your XML file. A mock example would look like the following: curl -u ega-test-data@ebi.ac.uk:egarocks -F "ACTION=VALIDATE" "https://wwwdev.ebi.ac.uk/ena/submit/drop-box/submit/" -F "STUDY=@study.xml" The validation attempt can have different results depending on the given arguments: If your XML file is valid according to EGA's schemas, you will see a message indicating that your XML file is compliant. For example, see below for our mock example, where the "success" was "true" (i.e. no validation errors found). Nevertheless, notice how the "<STUDY accession=" is empty: it is because we were simply validating, so the study did not get an accession or ID. <?xml version="1.0" encoding="UTF-8"?> <?xml-stylesheet type="text/xsl" href="receipt.xsl"?> <RECEIPT receiptDate="2023-04-11T15:19:28.850+01:00" submissionFile="submission-EBI-TEST_1681222768850.xml" success="true"> <STUDY accession="" alias="Mock example" status="PRIVATE"/> <SUBMISSION accession="" alias="SUBMISSION-11-04-2023-15:19:28:840"/> <MESSAGES> <INFO>VALIDATE action has been specified.</INFO> <INFO>Submission has been rolled back.</INFO> <INFO>This submission is a TEST submission and will be discarded within 24 hours</INFO> </MESSAGES> <ACTIONS>VALIDATE</ACTIONS> <ACTIONS>PROTECT</ACTIONS> If there are any errors or warnings, the tool will display them, allowing you to correct them before submitting your data to EGA. For example, in the following response, it is said that the object we were trying to submit was already existing, and therefore the "success" was "false". <?xml version="1.0" encoding="UTF-8"?> <?xml-stylesheet type="text/xsl" href="receipt.xsl"?> <RECEIPT receiptDate="2023-04-11T15:12:35.609+01:00" submissionFile="submission-EBI-TEST_1681222355609.xml" success="false"> <STUDY alias="Example!_Human Microbiome Project SP56J" status="PRIVATE" holdUntilDate="2023-03-11Z"/> <SUBMISSION alias="SUBMISSION-11-04-2023-15:12:35:576"/> <MESSAGES> <ERROR>In study, alias: "Example!_Human Microbiome Project SP56J". The object being added already exists in the submission account with accession: "ERP127584".</ERROR> <INFO>VALIDATE action has been specified.</INFO> <INFO>Submission has been rolled back.</INFO> <INFO>This submission is a TEST submission and will be discarded within 24 hours</INFO> </MESSAGES> <ACTIONS>VALIDATE</ACTIONS> <ACTIONS>PROTECT</ACTIONS> If the curl command retrieves no response at all, please double check if your username and password are correctly provided. Also notice the "ACTION=..." argument passed to the Curl command. This specifies the action to take during the call to Webin, so we do not need a "Submission" XML just for a validation attempt. See more at submission actions without submission XML. Furthermore, validation of multiple files or objects (e.g. sample, experiment, study…) can be done in a single command by adding more arguments (i.e. '-F'). For example: curl -u <USERNAME>:<PASSWORD> -F "ACTION=VALIDATE" "https://wwwdev.ebi.ac.uk/ena/submit/drop-box/submit/" -F "STUDY=@study.xml" -F "SAMPLE=@sample.xml" -F "DATASET=@dataset.xml" As mentioned above, beside "validate" action in the test environment, you can also validate your metadata by three other methods: "Validate" in the production server. From our example above, you simply need to take the "dev" away from the URL. curl -u <USERNAME>:<PASSWORD> -F "ACTION=VALIDATE" "https://www.ebi.ac.uk/ena/submit/drop-box/submit/" -F "STUDY=@study.xml" "Add" in the development server. From our example above, you would simply need to replace the action: from "validate" to "add". Whatever is submitted to this service will be discarded in 24h, so whether something gets submitted or not would not matter in the long run. curl -u <USERNAME>:<PASSWORD> -F "ACTION=ADD" "https://wwwdev.ebi.ac.uk/ena/submit/drop-box/submit/" -F "STUDY=@study.xml" "Add" in the productionserver. A combination of the previous two methods, which would render this attempt into a submission. This path is just to be taken when you are sure your metadata is compliant and what you want to submit. curl -u <USERNAME>:<PASSWORD> -F "ACTION=ADD" "https://www.ebi.ac.uk/ena/submit/drop-box/submit/" -F "STUDY=@study.xml" What happens after the submission of a dataset XML? Once you have completed the registration of your dataset/s please contact our Helpdesk Team to provide a release date for your study. Please note that all datasets affiliated to unreleased studies are automatically placed on hold until the authorised submitter or DAC contact contact the EGA Helpdesk for the study to be released. We strongly advise you not to delete your data until EGA Helpdesk confirms that your data has been successfully archived.
Data Access NOTE: Please refer to the "Authorized Access" section below for information about how access to the data from this accession differs from many other dbGaP accessions. Access to Biospecimens is through the NHLBI Biologic Specimen and Data Repository Information Coordinating Center (BioLINCC). Biospecimens from (ACCESS) include Bronchial Lavage, DNA, Peripheral Blood Mononuclear Cells, and Plasma. Please note that use of biospecimens in genetic research is subject to a tiered consent. Objectives: To determine the etiology of sarcoidosis by establishing a case control, multi-center study. In addition to etiology, this study also sought to examine socioeconomic variables and the clinical course of patients with sarcoidosis, including quality of life.Background: Sarcoidosis is a chronic granulomatous disorder of unknown cause that is characterized by activation of T-lymphocytes and macrophages. For many years, sarcoidosis was presumed to be an atypical manifestation of tuberculosis because of the similarity between the inflammatory responses of the two diseases. However, as culture techniques became more widely employed to diagnose tuberculosis and it became less common, it became clear that sarcoidosis was not simply a variation of tuberculosis. Data on the etiology of sarcoidosis have come from diverse sources: in clinical investigations, alveolitis has been found to precede granulomatous inflammation; in case control studies, familial aggregation has been identified; and in case reports, recurrence of granulomatous inflammation has been observed after lung transplantation. The cause may not prove to be a single, known exposure. Interactions of exposures with genetic dispositions could have important implications for our understanding of immune responses as well as the pathogenesis of sarcoidosis.Participants: 736 participants with sarcoidosis enrolled within 6 months of diagnosis from 10 clinical centers in the U.S. Using the ACCESS sarcoidosis assessment system, organ involvement was determined for the whole group and for subgroups differentiated by sex, race, and age (Conclusions: The initial presentation of sarcoidosis is related to sex, race and age, and it tends to remain stable over two years in the majority of patients. The etiology is probably multifactoral with both genetic and environmental factors contributing.Specimen Details: The PBMC for this study are pelleted and suspended in guanidinium-based solution and are nonviable.
A multi-center clinical trial for newly diagnosed high-risk neuroblastoma patients. Molecular tumor boards selected one of six targeted agents based on tumor-normal whole exome sequencing and tumor RNA sequencing data.
Human induced pluripotent stem (hiPS) cells hold great promise for regenerative medicine. Safety issues of use of hiPS cells however remain to be addressed. One of such issues is mutations derived from somatic donor cells and introduced during genome manipulation. We sequence whole genomes of hiPS cells and analyzed mutations. Our study brings hiPS cell technology one step closer to application to regenerative medicine.
Thyroid cancer is the most common endocrine malignancy. This dataset encompasses two types of thyroid cancer : anaplastic which is the most de-differentiated and aggressive one, and papillary which is the most common one. We profiled 14 patients, including 10 papillary and 4 anaplastic thyroid carcinomas, using both single nuclei RNA sequencing and spatial transcriptomics to link single cell resolution RNA sequencing with tissue morphology and better understand inter and intratumoral thyroid cancer heterogeneity.
The study was a single-center, open-label, phase II trial (registration no. NCT03250273) designed to evaluate the efficacy of entinostat in combination with nivolumab in patients with advanced pancreatic ductal adenocarcinoma (PDAC). The aim was to assess the objective response rate using RECIST v1.1 criteria as the primary endpoint. A total of 27 patients with advanced PDA were enrolled from November 2017 to November 2020. Their treatment involved a 14-day lead-in with entinostat monotherapy, followed by a combination with nivolumab. The study utilized several molecular technologies to assess immune profiles and tumor microenvironment (TME) changes: high-dimensional mass cytometry by time of flight (CyTOF), Luminex for chemokine analysis in plasma, multiplexed immunohistochemistry (mIHC), image cytometry-based quantification, bulk RNA sequencing analysis. The objective response rate (ORR) was 11% with three patients showing a partial response (PR). The median duration of response was 10.2 months. Grade ≥ 3 treatment-related adverse events (TRAEs) occurred in 63% of patients, with the most common being decreased lymphocyte count, anemia, hypoalbuminemia, and hyponatremia. Gene expression analysis showed an enrichment in inflammatory response signaling pathways with the combination treatment. RNA sequencing data with clinical and demographic patient information will be available through dbGaP. For expression summaries, please refer to GEO submission GSE248014.
Between 1993 and 2003, families were recruited in the Joslin Study on the Genetics of Type 2 Diabetes for the presence of an autosomal dominant mode of inheritance of diabetes. Recruiting and screening of families occurred through probands who were receiving medical care at the Joslin Clinic (Boston, MA). Screening of families included 1) a proband and at least one sibling with type 2 diabetes, 2) diabetes occurring in at least three generations, 3) diabetes inherited on one side of the prospective family. Probands had to have a diabetes diagnosis between the age range from 10 to 60 years. Demographic data, clinical data, and family history were collected from participating family members, along with blood and urine samples. This study includes genetic and phenotypic data from one family examined in Simeone, Wilkerson, et. al. (NPJ Genomic Medicine 2022, PMID: 35869090). Genotype data for 14 family members and whole genome sequencing data for 6 individuals were generated with the goal of identifying a potential genetic cause of disease in this family. To de-identify this family and protect confidentiality, information on sex in phenotype data and variants identified in X, Y, and MT chromosomes have been removed in compliance with IRB guidelines.
Serial whole exome sequencing of samples collected from 21 patients at multiple time points during progression from early to late chronic lymphocytic leukemia (CLL) and one matching non-tumor tissue sample from each patient. Additional whole genome sequencing of samples from 3 selected patients. Genome-wide B cell methylation compared between 5 healthy donors from the same age group as patients, 20 patients with monoclonal B cell lymphocytosis and in serial CLL samples with matching whole exome sequencing. Moreover, genome-wide single-cell RRBS-profiling of B cells from one healthy donor and from one patient with CLL was performed using a protocol newly developed by the A. Meissner group.
In this study we performed a genomic analysis of diagnosis-relapse pairs of 12 children who relapsed very early, followed by a deep-sequencing validation of all identified mutations. In addition, we included one case with a good initial treatment response and on-treatment relapse at the end of upfront therapy.