UHN Genomics Data Access Committee

Dac ID Contact Person Email Access Information
EGAC00001000912 Natalie Stickle natalie [dot] stickle [at] uhn [dot] ca No additional information is available

This DAC controls 5 datasets:

Dataset ID Description Technology Samples
EGAD00001002252 This data set contains next generation sequencing (NGS) data of two serial tumor samples (primary and a metastasis) from a patient with colorectal cancer showing an ERBB2 c.2264T>C (p.Leu755Ser). NGS was performed using the Illumina TruSeq Amplicon Cancer Panel (TSACP, Illumina) covering 212 amplicons in 48 cancer associated genes on the Illumina MiSeq sequencing platform. The dataset contains two BAM files. Illumina MiSeq 2
EGAD00001004133 Epigenetic profiling of colorectal cancer initiating cells (CC-ICs) to identify bivalently marked genes (H3K4me3 and H3K27me3 ChIP-seq), and investigation of changes in transcriptome following EZH2 inhibition using RNA-seq. Illumina HiSeq 2500,NextSeq 500 17
EGAD00001004269 This dataset includes 112 head and neck tumour samples with matched normal (blood) samples sequenced using a custom hybrid capture panel. Illumina HiSeq 2000 224
EGAD00001005140 In order to elucidate the biological pathways altered by sphingolipid modulation with N-(4-hydroxyphenyl) retinamide (4HPR) treatment in human HSPC that may contribute to the restraint in proliferation while promoting persistence of HSC self-renewal, as well as determine the mechanism of synergy in enhancement of HSC self-renewal with CB CD34+ agonists UM171 and StemRegenin 1 (SR1), we performed RNA-sequencing (RNA-Seq) of 3 pools of lin-CB cells following 2 or 4 days with DMSO, 4HPR, UM171+SR1 or 3-Factor (4HPR+UM171+SR1). We identified modulation of sphingolipid metabolism regulates self-renewal through activating coordinated stress pathways that coalesce on endoplasmic reticulum stress and autophagy programs. Illumina HiSeq 2500 25
EGAD00001006447 To elucidate the epigenetic changes which occur when human long-term hematopoietic stem cells (LT-HSC) become activated we performed Bulk ATAC-Seq on 13 sorted bulk hematopoietic populations from cord bloodas well as single-cell ATAC-Seq upon CD34+CD38-CD45RA- cells enriched for HSC as well as CD34+/CD38+ progenitor cells both from cord blood. These studies revealed gains of chromatin accessibility around CTCF binding sites during HSPC activation, as such we additionally performed Low-C to directly profile the 3D conformation of human cord-blood derived LT-HSC and Short-term hematopoietic stem cells (ST-HSC), as well as Hi-C , ATAC-Seq and CTCF ChIP-Seq upon the OCIAML-2 cell line in which CTCF sites gained during LT-HSC activation are enriched. Finally we transduced human cord-blood LT-HSC with an shCTCF vector; in-vitro cultured LT-HSC cells harbouring shCTCF were used to perform RNA-Seq, and scATAC-Seq was performed on CD34+/CD38- human CB cells transduced with shCTCF, four weeks post xeno-transplantation into mice. Collectively these studies have helped us demonstrate the role of 3D chromatin conformation changes during human LT-HSC activation. Illumina HiSeq 2000,Illumina HiSeq 2500,NextSeq 500,unspecified 62